750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100
Fax: (866) 988-3757
1800566 LABS (1 800566 5227)

Laboratory Report

for
Honolulu Board of Water Supply
630 South Beretania Street
Public Service Bldg." Room 308
Honolulu, HI 96843
Attention: Erwin Kawata
Fax: 808-550-5018

DEB: Debbie L Frank

Project Manager

Report:989424
Project:RED-HILL
Group:Red-Hill Expanded List (Albuquerque+)

[^0]
STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Montana	Cert 0035
Arizona	AZ0778	Nebraska	NE-OS-21-13
Arkansas	CA00006	Nevada	CA00006
California	2813	New Hampshire *	2959
Colorado	CA00006	New Jersey *	CA 008
Connecticut	PH-0107	New Mexico	CA00006
Delaware	CA 006	New York *	11320
Florida *	E871024	North Carolina	06701
Georgia	947	North Dakota	R-009
Guam	21-008R	Ohio-537.1	87786
Hawaii	CA00006	Oregon *	4034
Idaho	CA00006	Pennsylvania *	68-00565
Illinois	200033	Puerto Rico	CA00006
Indiana	C-CA-01	Rhode Island	LAO00326
Iowa - Asbestos	413	South Carolina	87016
Kansas *	E-10268	South Dakota	CA11320
Kentucky	90107	Tennessee	TN02839
Louisiana *	LA008	Texas *	T104704230-20-18
Maine	CA00006	Utah (Primary AB) *	CA00006
Maryland	224	Vermont	VT0114
Marianas Islands	MP0004	Virginia *	460260
Massachusetts	M-CA006	Washington	C838
Michigan	9906	EPA Region 5	CA00006
Mississippi	CA00006	Los Angeles County Sanitation Districts	10264

* NELAP/TNI Recognized Accreditation Bodies

ISO/IEC 17025:2917 Accredited Method List
The test listed below are accredited and met the requirements of ISO/IEC 17025 as verify by A2LA. Refer to our certificates and scope of accreditations (no. 5890-1 and 5890-2) found at: https://www.eurofinsus.com/Eaton

Test(s)	Method(s)	Potable Water *	Waste Water
Enterococci	Enterolert	x	x
Escherichia coli (Enumeration)	$\begin{aligned} & \hline \text { SM } 9221 \text { B. } 1 \\ & \text { SM } 9221 \text { F } \\ & \hline \end{aligned}$	x	
Fecal Coliform (P/A and Enumeration)	$\begin{gathered} \text { SM } 9221 \mathrm{C} \\ \text { (MTF/EC). SM } 9221 \\ \text { E(MTF/EC) } \end{gathered}$	x	x
Fecal Streptococci and Enterococci	SM 9230 B	x	x
Heterotrophic Bacteria	SM 9215 B	X	
Legionella	Legioleri®	X	
Pseudomonas aeruginosa	Idexx Pseudalert	x	
Total Coliform (P/A and Enumeration)	SM 9221A, SM 9221 B, SM 9221 C	X	x
Total Coliform, Total Coliform with Chlorine Present	SM 9221 B	x	x
Total Coliform/E. coli (P/A and Enumeration, Idexx Colilert, Idexx Colilert 18, Colisure)	SM 9223	x	
Total Microcystins and Nodularins	EPA 546	X	
Yeast and Mold	SM 9610	X	
1,2,3-Trichloropropane (TCP) at 5 PPT	CA SRL 524MTCP	X	
1,4-Dioxane	EPA 522	\times	
2,3,7,8-TCDD	$\begin{gathered} \hline \text { Modified EPA } \\ 1613 \mathrm{~B} \\ \hline \end{gathered}$	X	
Acrylamide	+ LCMS 2440)	X	
Algal Toxins/Microcys in	+ LCMS 3570	X	
Alkalinity	SM 2320 B	X	X
Ammonia	$\begin{gathered} \text { EPA 350.1, } \\ \text { SM 4500-NH3 } \\ H \end{gathered}$		x
Asbestos	EPA 100.2	X	x
Bicarbonate Alkalinity as	SM 2330 B	x	x
BOD/CBOD	SM 5210 B		X
Bromate	+ LCMS-2447	X	
Carbonate as CO3	SM 2330 B	X	x
Carbonyls	EPA 556	X	X
Chemical Oxygen Demand	$\begin{aligned} & \text { EPA 410.4, } \\ & \text { SM 5220D } \end{aligned}$		X
Chlorinated Acids	EPA 515.4	x	
Chlorine Dioxide	Palin Test Chlordio X Plus, SM 4500-CLO2 D	x	
Chlorine, Free, Combined, Total Residual, Chloramines	SM 4500-Cl G	x	
Color	SM2120B	X	
Conductivity	EPA 120.1, SM 2510B	x	x
Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated	SM 2330 B	x	
Cyanide (Amenable)	$\begin{gathered} \text { SM 4500-CN } \\ \text { G } \\ \hline \end{gathered}$	x	x
Cyanide (Free)	SM 4500CN F	x	X
Cyanide (Total)	EPA 335.4	X	X
Cyanogen Chloride (Screen)	$\begin{gathered} \text { +335 Mod } \\ \text { (WC-24467) } \\ \hline \end{gathered}$	x	
Diquat and Paraquat	EPA 549.2	X	
DBP and HAA	SM 6251 B	x	
Dissolved Organic Carbon	SM 5310 C	X	
Dissolved Oxygen	SM 4500-O G		x
EDB/DCBP/TCP	EPA 504.1	X	
EDB/DBCP and Disinfection Byproducts	EPA 551.1	x	
EDTA and NTA	+ WC-2454	X	
Endothall	$\begin{gathered} \text { EPA 548.1, } \\ +(\text { LCMS-2445 }) \end{gathered}$	X	
Fluoride	SM 4500F C	X	X
Glyphosate	EPA 547	X	
Glyphosate and AMPA	+ LCMS-3618	X	
Gross Alpha and Gross Beta	EPA 900.0	X	x

Test(s)	Method(s)	Potable Water *	Waste Water
Gross Alpha coprecipitation	SM 7110 C	X	X
Hardness	SM 2340 B	x	X
Hexavalent Chromium	EPA 218.6,	X	X
Hexavalent Chromium	EPA 218.7,	X	
Hexavalent Chromium	SM 3500-Cr B		X
Inorganic Anions and DBPs	EPA 300.0	X	X
Norganic Anions and DBPs	EPA 300.1	X	
Kjeldahl Nitrogen	EPA 351.2		X
Metals	$\begin{gathered} \text { EPA 200.7, } \\ \text { EPA200.8 } \\ \hline \end{gathered}$	X	X
Nitrosamines	EEA-Agilent 521.1 (GCMS-24250)	X	
Nitrate/Nitrite Nitrogen	EPA 353.2	X	X
Odor	SM2150B	X	
Organohalide Pesticides and PCB	EPA 505	X	
Ortho Phosphate	SM 4500P E	X	
Oxyhalides Disinfec ion Byproducts	EPA 317.0	X	
Perchlorate	EPA 331.0	x	
Perchlorate (Low and High Levels)	EPA 314.0	X	
Perfluorinated Alkyl Acids	$\begin{aligned} & \text { EPA 533, EPA } \\ & 537, \text { EPA } 537.1 \end{aligned}$	X	
PPCP and EDC	+ LCMS-2443	X	
pH	$\begin{gathered} \text { EPA } 150.1 \\ \text { SM } 4500-H+B \\ \hline \end{gathered}$	X	X
Phenolics - Low Level	${ }^{+}$WC 2493 (EPA 420.2 and EPA 420.4 MOD)	X	X
Phenylurea Pesticides/Herbicides	+ LCMS-2448	X	
Radium-226, Radium-228	$\begin{gathered} \text { GA Tech (Rad- } \\ 2374 \text {) } \\ \hline \end{gathered}$	X	
Radon-222	SM 7500RN	X	
Residue (Filterable)	SM 2540C	X	X
Residue (Non-Filterable)	SM 2540D		X
Residue (Total)	SM 2540B		X
Residue (Volatile)	EPA 160.4		X
Semi-Volatile Compounds	EPA 525.2	X	
Silica	$\begin{gathered} \text { SM 4500-SiO2 } \\ \text { C } \\ \hline \end{gathered}$	X	X
Sulfide	SM 4500-S D		X
Sulfite	SM 4500-SO3 B	X	X
Surfactants	SM 5540C	X	X
Taste and Odor	SM 6040 E	X	
Total Organic Carbon	SM 5310 C	X	X
Total Phenols	EPA 420.1		X
Total Phenols	EPA 420.4	X	X
Triazine Pesticides and their Degradates	+ LCMS-3617	X	
Turbidity	EPA 180.1	X	X
Uranium by ICP/MS	EPA 200.8	X	
UV 254 Organic Constituents	SM 5910B	X	
VOCs	EPA 524.2	X	
VOCs	$\begin{gathered} +(\text { GCMS } 2412) \\ \text { by EPA } 524.2 \\ \text { modified } \end{gathered}$	X	

(*) includes: Bottled Water, Drinking Water and Water as
Component of Food \& Beverage.
(+) In-House Method

Acknowledgement of Samples Received

```
Addr: Honolulu Board of Water Supply 630 South Beretania Street Public Service Bldg." Room 308
Honolulu, HI 96843
```

Client ID: HONOLULU
Folder \#: 989424
Project: RED-HILL
Sample Group: Red-Hill Expanded List
(Albuquerque+)
Project Manager: Debbie L Frank
Phone: (626) 386-1149
PO \#: C20525101 exp 05312023

The following samples were received from you on February 24, 2022 at 1208. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using Eurofins Eaton Analytical, LLC.

Sample \#	Sample ID	Sample Date
$\underline{202202240795}$	AIEA GULCH WELLS PUMP 1 (331-201-TP071)	02/22/2022 0930
	@625BN_Physis (SUB)Gas Fraction Hydrocarbons	TPH 8015 Diesel and Motor Oil
	: TPH 8015 Jet Fuel 5 TPH 8015 Jef Fuel 8	
$\underline{202202240796}$	TRAVEL BLANK::AIEA GULCH WELLS PUMP 1 (331-201-TP071)	02/22/2022 0930
	: (SUB)Gas Fraction Hydrocarbons	
$\underline{202202240797}$	AIEA GULCH WELLS PUMP 2 (331-202-TP072)	02/22/2022 0930
	@625BN_Physis (SUB)Gas Fraction Hydrocarbons	TPH 8015 Diesel and Motor Oil
	: TPH 8015 Jet Fuel 5 TPH 8015 Jef Fuel 8	
$\underline{202202240798 ~}$	TRAVEL BLANK::AIEA GULCH WELLS PUMP 2 -331-202-TP072	02/22/2022 0930
	(SUB)Gas Fraction Hydrocarbons	...

Test Description

@625BN_Physis -- 625 Base Neutral Extractable in ug/L

INTERNAL CHAIN OF CUSTODY RECORD
SAMPLE TEMP RECEIVED:
Nota $1 /$ samples are out of temperature range,
Nota: Il samples are out of tamperature range, let tha A5Ms know. A5Ms will determine
SAMPLES REC'D DAY OF COLLECTION? Yas.
$\left.\underline{2.8^{\circ}}{ }^{\circ} \mathrm{C}\right)$
$\left.{ }^{\circ} \mathrm{C}\right)\left(\right.$ Corr.Factor $\left.{ }^{-(0.3}{ }^{\circ} \mathrm{C}\right)($ Flnal $=2.8$
CONDITION OFICE; Frozen J Partlally Frozen
METHOD OF SHIPMENT: Plck-Up / Walk-In / FedEx / UPS / DHL / Area Fast / Top LIne / Other: __ . .
Compllance Acceptance Criterla:

1) Chemistry: $>0, \leq 6^{\circ} \mathrm{C}$, not frozen (NELAP) (If recelved after 24 hrs of sample collectlon).
2) Microblology, Dlstribution:
3) Microblology, Dlstrlbution: $<10^{\circ} \mathrm{C}$, not frozen (can be $\geq 10^{\circ} \mathrm{C}$ If recelved on lce the sama day as sample collectlon, within 8 hours)
4) Microblology, Surface Water: $<10^{\circ} \mathrm{C}$ (If recelved after 2 hours of sample collectlon)

If out of temperalure range lor both Chamis iry	1- (Obrervalloin	c) (Cotr Fator	c) (Flnel				
lemparalure of each quadrant and reoord ach lemparalure of the quadrants	3 - Obsarvallons	'C) (Cortr.Pastor	c) (Plinalu	4 - parsinallons	c) (Carr.Faal	${ }^{\text {ch }}$ ((FInal n	-a)

4 Dioxin (1613 or $2,3,7,8$ TCDD): must be between $0-4^{\circ} \mathrm{C}$, not frozen (If recelved after 24 hrs of sample collactlon)
SAMPLE TEMP RECEIVED;
If samples are out ol temperatura fans, iet tha A5MS know. A5Ms wir determine whathar to proce ed
. 31

$1 R \operatorname{Gun} I D=6$
TYPE OFICE: Rieal__ Synthetlo__ Nolce__

If oul of temperatura range lor both Chamlastry and Mlaroblology samplos and lemperatura doan not conflrm, then masaure tha
temperalure of each quadrant and reoord each lemperalura of the
, H Check. Manufacturer: G) Chiorlne check. Manufacturer; Sansafe. Lot No.:
7) VOA and Radon

No Samples wlth Headspace: Samples with Headspace (see below)! \square

NO

 Lot Number:
Explration Date
Headspace Documentation (use additional VOC and Radon Internal COFC for adder using 40 ml vials,

-

dspace (l.a, potential sampling errors):
print hame
 Note Sample IDs which have dlssimilar head

Note Sample IDs which ha mignature

RECEIVEDGY:

SIONATURE	
SAMPLES CHECKED AOAINST COC BY:	.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.
-əp!nפ әo!nes xヨpə」

 u! ן

Report: 989424
Project: RED-HILL
Group: Red-Hill Expanded List
(Albuquerque ${ }^{+}$)

Honolulu Board of Water Supply

Erwin Kawata

630 South Beretania Street
Public Service Bldg." Room 308
Honolulu, HI 96843

Folder Comments

Results for 624 BNA are submitted by Physis Environmental Laboratories, Inc.
Add 625BN for BCEE February monitoring start, per Erwin Kawata.

Honolulu Board of Water Supply Samples Received on:
Erwin Kawata
630 South Beretania Street
Public Service Bldg." Room 308
Honolulu, HI 96843

02/24/2022 1208

Analyzed	Analyte	Sample ID	Result	HI Limit	Units

Tel: (626) 386-1100
Fax: (866) 988-3757
1800566 LABS (1 800566 5227)

Report: 989424
Project: RED-HILL
Group: Red-Hill Expanded List
(Albuquerque+)

Honolulu Board of Water Supply
Erwin Kawata
630 South Beretania Street
Public Service Bldg." Room 308
Honolulu, HI 96843

Samples Received on:
02/24/2022 1208
Prepped \quad Analyzed \quad Prep Batch Analytical Batch \quad Method \quad Analyte \quad Result \quad Units \quad MRL

AIEA GULCH WELLS PUMP 1 (331-201-TP071) (202202240795)
SW 8015B - (SUB)Gas Fraction Hydrocarbons

Sampled on 02/22/2022 0930

TRAVEL BLANK::AIEA GULCH WELLS PUMP 1 (331-201-TP071) (202202240796)
SW 8015B - (SUB)Gas Fraction Hydrocarbons
02/25/22 02/25/22 23:22 (SW 8015B) (SUB)Gas Fraction Hydrocarbons
AIEA GULCH WELLS PUMP 2 (331-202-TP072) (202202240797)

SW 8015B - (SUB)Gas Fraction Hydrocarbons

[^1]Sampled on 02/22/2022 0930
$\begin{array}{lll}\mathrm{mg} / \mathrm{L} & 0.02 & 1\end{array}$
Sampled on 02/22/2022 0930
$\begin{array}{lll}\mathrm{mg} / \mathrm{L} & 0.02 & 1\end{array}$

Honolulu Board of Water Supply

Erwin Kawata
630 South Beretania Street
Public Service Bldg." Room 308
Honolulu, HI 96843

Samples Received on:
02/24/2022 1208

Prepped	Analyzed	Prep Batch	Analytical Batch	Method	Analyte	Result	Units	MRL	Dilution
SW 8015B - TPH 8015 Diesel and Motor Oil									
02/28/22	03/01/22 18:37			(SW 8015B)	TPH Diesel	ND	mg/L	0.026	1
02/28/22	03/01/22 18:37			(SW 8015B)	TPH Motor Oil	ND	mg/kg	0.052	1
EPA 8015 - Jet Fuel 5 C8-C18									
02/28/22	03/01/22 18:37			(EPA 8015)	Jet Fuel 5	ND	mg/L	0.052	1
EPA 8015 - Jet Fuel 8 C8-C18									
	03/01/22 18:37			(EPA 8015)	Jet Fuel 8	ND	mg/L	0.052	1
EPA 625-625 Base Neutral Extractable in ug/L									
03/01/22	03/24/22 00:00			(EPA 625)	2-Chloronaphthalene	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	2-Nitroaniline	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	3-Nitroaniline	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	4-Bromophenylphenyl Ether	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	4-Chlorophenylphenyl Ether	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	4-Nitroaniline	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	Aniline	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	Benzidine	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	bis(2-Chloroethoxy)methane	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	bis(2-Chloroethyl)ether	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	bis(2-Chloroisopropyl) ether	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	Dibenzofuran	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	Disalicylidenepropanediamine	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	Hexachloroethane	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	Nitrobenzene	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	N-Nitrosodi-N-propylamine	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	N-Nitrosodiphenylamine	ND	ug/L	0.1	1
03/01/22	03/24/22 00:00			(EPA 625)	p-Chloroaniline	ND	ug/L	0.1	1

TRAVEL BLANK::AIEA GULCH WELLS PUMP 2 -331-202-TP072 (202202240798)

SW 8015B - (SUB)Gas Fraction Hydrocarbons

02/25/22 02/25/22 23:58
(SW 8015B)
(SUB)Gas Fraction Hydrocarbons

April 13, 2022

Debbie Frank
Eurofins Eaton Analytical 750 Royal Oaks Drive
Suite 100
Monrovia, CA 91016-

Project Name: Folder \# 989424 Job \# 1000014
Physis Project ID: 1407003-225

Dear Debbie,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 2/28/2022. A total of 2 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Organics	
Base/Neutral Extractable Compounds by EPA 625.1	

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier
714 602-5320
Extension 202
mistymercier@physislabs.com

PROJECT SAMPLE LIST

Eurofins Eaton Analytical
Folder \# 989424 Job \# 1000014

PHYSIS Project ID: 1407003-225
Total Samples: 2

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY
LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~ 800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to
the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
\#	see Case Narrative
analyte not detected at or above the MDL	
E	analyte was detected in the procedural blank greater than 10 times the MDL analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
H	sample received and/or analyzed past the recommended holding time
analyte was detected at a concentration below the RL and above the MDL,	
reported value is estimated	
insufficient sample, analysis could not be performed	

CASE NARRATIVE

QUALIFIER NOTES

In addition to the use of analyte specific Physis Qualifier Codes where applicable, the following were also noted.

ND

MDL is listed due to report format restrictions; it is not used in reporting. Analytical results reported are ND at the RL.

PMTSS

ENVIRONMENTAL LABORATORIES, INC.
Project: Folder \# 989424 Job \#1000014

Base/Neutral Extractable Compounds											
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95482-R1	202202240795 AIEA	WEL	ix: Samp	water			Sampled:	22-Feb-22	9:30	Received:	28-Feb-22
2-Chloronaphthalene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
2-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
3-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Bromophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chloroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chlorophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Aniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Benzidine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethoxy) methane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroisopropyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
D benzofuran	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Hexachloroethane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Nitrobenzene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodi-n-propylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodiphenylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22

PMTSS

ENVIRONMENTAL LABORATORIES, INC.
Project: Folder \# 989424 Job \# 1000014

Base/Neutral Extractable Compounds											
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95483-R1	202202240797 AIEA	CH WEL	trix: Sam	water			Sampled:	22-Feb-22	9:30	Received:	28-Feb-22
2-Chloronaphthalene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
2-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
3-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Bromophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chloroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chlorophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Aniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Benzidine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethoxy) methane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroisopropyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
D benzofuran	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Hexachloroethane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Nitrobenzene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodi-n-propylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodiphenylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22

PMTSS
ENVIRONMENTAL LABARATORIES, INC.

N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
PHYSIS Project ID: 1407003-225
Client: Eurofins Eaton Analytical
Project: Folder \# 989424 Job \# 1000014

PMTSSSENVIRONMENTAL LABARATORIES, INC.
Innovative Solutions for Nature

Base/Neutral Extractable Compounds							QUALITY CONTROL REPORT						
ANALYTE F	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	ACCURACY		PRECISION		QA CODEC
							LEVEL	RESULT	\%	LIMITS		\% LIMITS	
Sample ID: 95481-BS	BS1 QAQC Procedural Blank				Matrix: BlankMatrix			ix Sampled:		Received:			
	Method: EPA 625.1				Batch ID: 0-35094			Prepared: 00-Mar-22			Analyzed: 24-Mar-22		
2-Chloronaphthalene	Total	0.806	1	0.05	0.1	ug/L	1	0	81	53-130\%	PASS		
2-Nitroaniline	Total	0.775	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	77	69-114\%	PASS		
3-Nitroaniline	Total	0.864	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	86	23-137\%	PASS		
4-Bromophenylphenyl ether	Total	0.918	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	92	61-132\%	PASS		
4 Chloroaniline	Total	1.09	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	109	50-150\%	PASS		
4Chlorophenylphenyl ether	Total	0.885	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	88	63-130\%	PASS		
4-Nitroaniline	Total	0.708	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	71	10-159\%	PASS		
Aniline	Total	0.738	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	74	50-150\%	PASS		
Benzidine	Total	96.3	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	100	0	96	0-125\%	PASS		
Bis(2-Chloroethoxy) methane	Total	0.797	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	80	66-122\%	PASS		
Bis(2-Chloroethyl) ether	Total	0.738	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	74	43-127\%	PASS		
Bis(2-Chloroisopropy) ether	Total	0.759	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	76	49-128\%	PASS		
Dibenzofuran	Total	0.857	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	86	50-150\%	PASS		
Hexachloroethane	Total	0.665	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	67	27-130\%	PASS		
Nitrobenzene	Total	0.674	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	67	54-111\%	PASS		
N-Nitrosodi-n-propylamine	Total	0.649	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	65	61-152\%	PASS		
N -Nitrosodiphenylamine	Total	0.85	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	85	49-142\%	PASS		

PHYSIS Project ID: 1407003-225
Client: Eurofins Eaton Analytical
Project: Folder \# 989424 Job \# 1000014

PMTSSSENVIRONMENTAL LABARATORIES, INC.
PHYSIS Project ID: 1407003-225
Client: Eurofins Eaton Analytical
Project: Folder \# 989424 Job \# 1000014

Submittal Form

-REPORTING REQUIRMENTS: Do Not Combine Reports with any other samples submitted under different Folder Numbers!
Report \& Invoice must have the Folder \& 8 .
Report all quality control data according to Method. Include dates analyzed. Date extracted (f extracted) and Method reference on the report. Results must have Complete data \& QC with Approval Signature
Provide in each Report the
Specified StateCertificabon \# and por Samples from: HAWAII
th the

Time Matrix 0930 DW	Clip Code	PWSID	
Point ID:	Static ID:		

Invoices to; Eurofins Eaton Analytical, LLC
Accounts Payable 2425 New Holland Pike, Lancaster, Invoices to: Eurofins Eaton Analytical, LLC
Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605 report stating RL reporting only

TICs needed

Ship To:

'Physis Environmental Laboratories,
 Inc 1904
 Anaheim, CA 92806-6028
 Phone: 714-602-5320 Fax:

\section*{| Folder \#: | Report Due: |
| :--- | :--- |
| 989424 | $03 / 01 / 2022$ |}

EPA $625 \quad 625$ Base Neutral Extractable in ug/L
ID for reference onl
ELS PUMP 1 (331-201-TP071)
Sample Event:
Prep Method Analysis Requested
EPA 625625 Base Neutral Extractable in ug/L
AIEA GULCH WELLS PUMP 2 (331-202-TP072)
Prep Method Analysis Requested
625 Base Neutral Extractable in ug/L

Page 2 of 2

Sample Receipt Summary

Receiving Info

1. Initials Received B
2. Date Received:

3. Time Received:
4. Client Name: \qquad throwing
5. Eerier Information: (Please circle)

- Client
- UPS
- Area Fast
- DPS
- FedEx
- GSO/GLS
- PHYSIS Driver:
- Ontrac
- PAMS
i. Start Time: \qquad iii. Total Mileage:
ii. End Time: \qquad iv. Number of Pickups:
\qquad
\qquad

6. Container Information: (Please put the \# of containers or circle none)

- L
Cooler
_Styrofoam Cooler
Boxes
- None
- __Carboys) - _Carboy Trash Cans)
- Other

7. What ion of ice was used: (Please circle any that apply)

Wet Ice - Blue Ice - Dry Ice
8. Randomly Selected Samples Temperature $\left({ }^{\circ} \mathrm{C}\right): 3$ at

Inspection Info

1. Initials Inspected By:

Sample Integrity Upon Receipt:

1. $\operatorname{COC}(s)$ included and completely filled out \qquad

No
2. All sample containers arrived intact.
........

- Water
\qquad

3. All samples listed on $\operatorname{COC}(\mathrm{s})$ are present \qquad Yo. I No
4. Information on containers consistent with information on $\operatorname{COC}(\mathrm{s})$. \qquad
5. Correct containers and volume for all analyses indicated.

1 No
6. All samples received within method holding time \qquad

7. Correct preservation used for all analyses indicated

8. Name of sampler included on $\mathrm{COC}(\mathrm{s})$
\qquad

Project Iteration ID:	1407003-225
Client Name:	Eurofins Eaton Analytical
Project Name:	Folder \# 989424 Job \# 1000014
COC Page Number:	2 of 2
Bottle Label Color:	NA

Project Iteration ID: 1407003-225
Client Name: Eurofins Eaton Analytical
Project Name: Folder \# 989424 Job \# 1000014

- 2 of 2

Bottle Label Color: NA

LABORATORIES, INC.
3051 Fuita Street
Torrance, CA 90505
Tel: (310)-618-8889

```
Date: 03-10-2022
EMAX Batch No.: 22B258
```

Attn: Jackie Contreras
Eurofins Eaton Analytical
750 Royal Oaks Dr., Suite 100
Monrovia, CA 91016-3629

Subject: Laboratory Report
Project: 989424

Enclosed is the Laboratory report for samples received on 02/25/22. The data reported relate only to samples listed below :

Sample ID	Control \# Col Date	Matrix	Analysis
202202240795	B258-01 $02 / 22 / 22$	WATER	TPH GASOLINE
202202240796			
202202240797	$B 258-02$	$02 / 22 / 22$	WATER

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that results included in this report meets all TNI \& DOD requirements unless noted in the Case Narrative.

NELAP Accredited Certificate Number CA002912021-19
ANAB Accredited DOD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing California ELAP Accredited Certificate Number 2672
Report \& Invoice must have the Folder\# 989424 Job \# 1000014
Report all quality control data according to Method. Include dates.
Results must have Complete data \& QC with Approval Signa

Sample ID 202202240795	Client Sample ID for reference AIEA GULCH WELES PUMP 1 (331-2	
Sample type:		Sample Event:
Method	Prep Method	Analysis
SW 8015B	EPA 5030C	(SUB)Gas
SW 8015B	EPA 3550B	TPH 8015
EPA 8015	EPA 8015	Jet Fuel 5
EPA 8015		Jet Fuel 8

Analysis Requested

$$
\begin{aligned}
& \text { Jet Fuel } 5 \text { C8-C18 } \\
& \text { Jet Fuel } 8 \text { C8-C18 }
\end{aligned}
$$

2-3 day rush

$$
\begin{aligned}
& \text { Client Sample ID for reference on1 } \\
& \text { AIEA GULCH WELLS PUMP } 1 \text { (331-201-TP071) }
\end{aligned}
$$

$$
02 / 22 / 220930 \mathrm{DW}
$$

Facility ID: Sample Point ID:

		2213258			
$\begin{aligned} & \begin{array}{l} \text { Sample ID } \\ 202202240797 \end{array} \end{aligned}$	Client Sample ID for reference onl AIEA GULCH WELLS PUMP 2 (331-202-TP072)	Sample Date \& Time Matrix 02/22/22 0930 DW	Clip Code	PWSID	JS
Sample type:	Sample Event: Facility ID:	Sample Point ID:		Static ID:	
Method	Prep Method Analysis Requested				
SW 8015B	EPA 5030C (SUB)Gas Fraction Hydrocarbons				
SW 8015 B	EPA 3550B TPH 8015 Diesel and Motor Oil				
EPA 8015	EPA 8015 Jet Fuel 5 C8-C18				
EPA 8015	Jet Fuel 8 C8-C18				
$\begin{aligned} & \text { Sample ID } \\ & 202202240798 \end{aligned}$	Client Sample ID for reference onl TRAVEL BLANK:AIEA GULCH WELLS PUMP 2-331-202-TPO72	Sample Date \& Time Matrix 02/22/22 0930 DW	Clip Code	PWSID	JSS
4 Sample type:	Sample Event: Facility ID:	Sample Point ID:		Static ID:	
Method	Prep Method Analysis Requested				
SW 8015B	EPA 5030C (SUB)Gas Fraction Hydrocarbons				

Type of Delivery	Airbill/Tracking Number	ECN $22 \mathrm{B258}$
\square Fedex \square UPS \square GSO \square Others		Recipient JHOW/h 28 more
\square EMAX Courier \varnothing Client Delivery	Date $2 / 25 / 22$	

COC INSPECTION					
$\square \mathrm{Client}$ Name	- Client PM/FC	\square Sampler Name	\square Sampling Date/Time	Lsample ID	5.Matrix
\square Address	57 Fel \#/ Fax \#	7 Courier Signature	DAnalysis Required	DPreservative (if any)	$\boxed{\square T A T}$
Safety Issues (if any)	- High concentrations expected	\square From Superfund Site	Rad screening required		

Note:

PACKAGING INSPECTION				
Container * Corroction	\square Cooler \square Box	\square Other		
Condition factor	\square Custody Seal \square Intact	\square Damaged		
Packaging - 0.5	\square Bubble Pack $\quad \square$ Styrofoam	\square Popcom	\square Sufficient	\square
Temperatures	¢CCooler 11.2/0.7 ${ }^{\circ} \mathrm{C}$ Cooler 23.0/2. $5^{\circ} \mathrm{C}$	$\boxed{6}$ Cooler 3 1.8/1.3 ${ }^{\circ}{ }^{\circ} \mathrm{C}$	\square Cooler 4	\square Cooler $5 \ldots \quad{ }^{\circ} \mathrm{C}$
(Cool, $\leq 6^{\circ} \mathrm{C}$ but not frozen) Thermameter:		$\begin{aligned} & \square \text { Cooier } 8 \\ & r-S N \underline{210271399}{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \square \text { Cooler } 9 \\ & n-. S / N \end{aligned} \quad{ }^{\circ} \mathrm{C}$	\square Cooler $10 \ldots \quad{ }^{\circ} \mathrm{C}$
Comments: \square Yemperature is out of range. PM was informed IMMEDIATELY.				
Note:				

$\square \mathrm{pH}$ holding time requirement for water samples is 15 mins. Water samples for pH analysis are received beyond 15 minutes from sampling time.

NOTES/OBSERVATIONS

LEGEND:

Code Description-Sample Management
D1 Analysis is not indicated in
D2 Analysis mismatch COC vs label
D3 Sample ID mismatch COC vs label
D4 Sample ID is not indicated in
D5 Contaiper [improper] [leaking] [brpkef
D6 patertimes not indicated in ved
D7 Dateflime mismatch COC vs label
D8 Sample listed in COC is not received
D9 Sample received is not listed in COC
D10 No initial/date on corrections in COC/label
D11 Container count mismatch COC vs received

REVIEWS:

D12 Container size mismatch COC vs received
Sample Labeling zevora a eqé(fee) Date $2125 / 22+125 / 22$

Code Description-Sample Management
D13 Out of Holding Time
D14 Bubble is $>6 \mathrm{~mm}$
D15 No trip blank in cooler
D16 Preservation not indicated in \qquad
D17 Preservation mismatch COC vs label
D18 Insufficient chemical preservative
D19 Insufficient Sample
D20 No filtration info for dissolved analysis
D21 No sample for moisture determination
D22
D23
\square Continue to next page.
Code Description-Sample Management
R1 Proceed as indicated in $\mathrm{COC} \square$ Labcl
R2 Refer to attached instruction
R3 Cancel the analysis
R4 Use vial with smallest bubble first
R5 Log-in with latest sampling date and time +1 min
R6 Adjust pH as necessary
R7 Filter and preserved as necessary
R8
R9
R10
R11
R12

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
B	B	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range or estimated value.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

989424

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

```
Client : EUROFINS EATON ANALYTICAL
Project: 989424
SDG : 22B258
```


METHOD 5030B/8015B
 TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

A total of four (4) water samples were received on $02 / 25 / 22$ to be analyzed for Total Petroleum Hydrocarbons by Purge and Trap in accordance with Method 5030B/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. VG39B13B - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample
Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. VG39B13L/VG39B13C were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample
Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. Gasoline was within MS QC limits in B260-01M/B260-01S. Refer to Matrix QC summary form for details.

Surrogate
Surrogate was added on $Q C$ and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis
Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

SAMPLE RESULTS

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Notes:

Parameter $\quad \mathrm{H}-\mathrm{C}$ Range
Gasoline C6-C10
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 5 ml Final Volume : 5 ml
Prepared by : SCerva Analyzed by : SCerva

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Notes:

Parameter $\quad \mathrm{H}-\mathrm{C}$ Range
Gasoline C6-C10
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 5 ml Final Volume : 5ml
Prepared by : SCerva Analyzed by : SCerva

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Notes:	
Parameter	H-C Range
Gasoline	C6-C10

Gasoline
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 5ml Final Volume : 5ml
Prepared by : SCerva Analyzed by : SCerva

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Notes:

Parameter $\quad \mathrm{H}-\mathrm{C}$ Range
Gasoline C6-C10
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : $5 \mathrm{ml} \quad$ Final Volume : 5 ml

Prepared by : SCerva Analyzed by : SCerva

QC SUMMARIES

METHOD 5030B/8015B
TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Notes:

Parameter H-C Range
Gasoline C6-C10
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 5ml Final Volume : 5ml

Prepared by : SCerva Analyzed by : SCerva

EMAX QUALITY CONTROL DATA
LAB CONTROL SAMPLE ANALYSIS

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

EMAX QUALITY CONTROL DATA
 MS/MSD ANALYSIS

ACCESSION:

PARAMETERS	$\begin{aligned} & \text { PSResult } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (\%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (\%)	RPD (\%)	QCLimit (\%)	MaxRPD (\%)
Gasoline	ND	0.500	0.495	99	0.500	0.498	100	1	50-130	30

SURROGATE PARAMETER	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (\%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSORec (\%)	QCLimit (\%)
Bromofluorobenzene	0.0400	0.0410	103	0.0400	0.0426	107	60-140

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

989424

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL

Project: 989424
SDG : 22B258
METHOD 3520C/8015B
TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION
A total of two (2) water samples were received on $02 / 25 / 22$ to be analyzed for Total Petroleum Hydrocarbons by Extraction in accordance with Method $3520 \mathrm{C} / 8015 \mathrm{~B}$ and project specific requirements.

Holding Time
Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank
Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSB035WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample
Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) LCS was analyzed. Percent recovery for Diesel was within LCS QC limits in DSB035WL. Refer to LCS summary form for details.

Matrix QC Sample
Matrix spike sample was prepared and analyzed at a frequency required by the project. One(1) set of MS/MSD was analyzed. Diesel was within MS QC limits in 22B260-01M/22B260-01S. Refer to Matrix QC summary form for details.

Surrogate
Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis
Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL
Project: 989424
SDG : 22B258
METHOD 3520C/8015B
PETROLEUM HYDROCARBONS BY EXTRACTION
A total of two (2) water samples were received on $02 / 25 / 22$ to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method $3520 \mathrm{C} / 8015 \mathrm{~B}$ and project specific requirements.

Holding Time
Samples were analyzed within the prescribed holding time.
Calibration
Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank
Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSB035WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample
Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) LCS was analyzed. Percent recovery for JP5 was within LCS QC limits in J5B035WL. Refer to LCS summary form for details.

Matrix QC Sample
Matrix spike sample was prepared and analyzed at a frequency required by the project. One (1) set of MS/MSD was analyzed. JP5 was within MS QC limits in 22B260-01M/22B260-01S. Refer to Matrix QC summary form for details.

Surrogate
Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis
Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL

Project: 989424
SDG : 22B258
METHOD 3520C/8015B
PETROLEUM HYDROCARBONS BY EXTRACTION
A total of two (2) water samples were received on $02 / 25 / 22$ to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method $3520 \mathrm{C} / 8015 \mathrm{~B}$ and project specific requirements.

Holding Time
Samples were analyzed within the prescribed holding time.
Calibration
Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank
Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSB035WB result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample
Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) LCS was analyzed. Percent recovery for JP8 was within LCS QC limits in J8B035WL. Refer to LCS summary form for details.

Matrix QC Sample
Matrix spike sample was prepared and analyzed at a frequency required by the project. One (1) set of MS/MSD was analyzed. JP8 was within MS QC limits in 22B260-01M/22B260-01S. Refer to Matrix QC summary form for details.

Surrogate
Surrogates were added on $Q C$ and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis
Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.
LAB CHRONICLE
total PETROLEUM HYDROCARBOI

REPORT ID: 22B258

FN \quad - Filename
\% Moist - Percent Moisture

REPORT ID: 22B258

Page 54 of 88 pages

SAMPLE RESULTS

METHOD 3520C/8015B
total petroleum hydrocarbons by extraction

METHOD 3520C/8015B
PETROLEUM KYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON	ANALYTICAL	Date Collected: 02/22/22 09:30		
Project : 989424		Date Received: 02/25/22		
Batch No. : 228258		Date Analyzed: 03/01/22 18:19		
Sample ID : 202202240795				
Lab Samp ID: 228258-01		Dilution Factor: 1		
Lab File ID: LC01015A		Matrix: WATER		
Ext Btch 1D: 22DSB035W		\% Moisture: NA		
Calib. Ref.: LC01005A		Instrument ID: D5		
	RESULTS	RL	MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
JP5	ND	0.048	0.024	
SURROGATE PARAMETERS	RESULT	SPK_AMT	\%RECOVERY	QC LIMIT
Brumuberizente	0.363	0.480	76	$60 \cdot 130$
Hexacosane	0.128	0.120	107	60-130

Notes:

RL \quad Reporting Limit	
Parameter	H-C Range
JP5	C8-C18

Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.

Sample Amount $: 1040 \mathrm{ml}$
Prepared by

METHOD 3520C/8015B
PETROLEUM HYDROCARBONS BY EXTRACTION

: EUROFINS EATON ANALYtical		Date Collected: 02/22/22 09:30		
Project : 989424		Date Received: 02/25/22		
Batch No. : 228258		Date Extracted:		02/28/22 14:15
Sample ID : 202202240795				03/01/22 18:19
Lab Samp ID: 22B258-01		Dilution Factor: 1		1
Lab File ID: LC01015A		Matrix: WATER		
Ext Btch ID: 22DSB035W		\% Moisture: NA		
Calib. Ref.: LC01006A		Instrument ID: D5		
	RESULTS		MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
JP8	ND	0.048	0.024	
SURROGATE PARAMETERS	RESULT	SPK_AMT	\%RECOVERY	QC Limit
Bromobenzene	0.363	0.480	76	60-130
Hexacosane	0.128	0.120	107	60-130

Notes:

RL : Reporting Limit
Parameter H-C Range
JP8 C8-C18
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 1040 ml Final Volume : 5 ml
Prepared by : JMuert Analyzed by : SDeeso

METHOD 3520C/8015B
total petroleum hydrocarbons by extraction

Notes:
Parameter H-C Range
Diesel C10-C24
Motor Oil C24-C36
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 950 ml Final Volume : 5 ml

Prepared by : JMuert Analyzed by : SDeeso

METHOD 3520C/8015B
petroleum hydrocarbons by extraction

client : EUROFINS EATON	ANALYTICAL	Date Collected: 02/22/22 09:30		
Project : 989424		Date Received: 02/25/22		
Batch No. : 22 B 258		Date Extracted: 02/28/22 14:15		
Sample ID : 202202240797		Date Analyzed: 03/01/22 18:37		
Lab Samp ID: 22B258-03		Dilution Factor: 1		
Lab File ID: LC01016A		Matrix: WATER		
Ext Btch ID: 22DSB035W		\% Moisture: NA		
Calib. Ref.: LC01005A		Instrument ID: D5		
	RESULTS	RL	MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
JP5	ND	0.052	0.026	
SURROGATE PARAMETERS	RESULT	SPK_AMT	\%RECOVERY	QC LIMIT
Bromobenzene	0.382	0.525	73	60-130
Hexacosane	0.142	0.131	108	60-130

Notes:	
RL \quad Reporting Limit	
Parameter	$H-C$ Range
JP5	C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.	
Sample Amount	$: 950 \mathrm{ml}$
Frepared by	$:$ JMuert

METHOD 3520C/8015B
PETROLEUM HYDROCARBONS BY EXTRACTION

QC SUMMARIES

METHOD 3520C/8015B
total petroleum hydrocarbons by extraction

Notes:

Parameter H-C Range
Diesel C10-C24
Motor Oil c24-C36
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.

Sample Amount	$: 1000 \mathrm{ml}$	Final Volume $: 5 \mathrm{ml}$
Prepared by	$:$ JMuert	Analyzed by $:$ SDeeso

EMAX QUALITY CONTROL DATA
LAB CONTROL SAMPLE ANALYSIS

CLIENT	: EUROFINS EATON ANALYTICAL	
PROJECT	: 989424	
BATCH NO.	: 228258	
METHOD	: 3520C/8015B	
MATRIX	: WATER	\% MOISTURE:NA
DILUTION FACTOR:	: 1	1
SAMPLE ID	: MBLK1W	LCS1W
LAB SAMPLE ID	: DSB035WB	DSB035WL
LAB FILE ID	: LC01011A	LC01012A
DATE PREPARED	: 02/28/22 14:15	02/28/22 14:15
DATE ANALYZED	: 03/01/22 17:05	03/01/22 17:24
PREP BATCH	: 22DSB035W	22DSB035W
CALIBRATION REF:	: LC01004A	LC01004A

ACCESSION:

PARAMETERS	MBResult (mg/L)	SpikeAnlt (mg/L)	LCSResull (mg/L)	LCSRec (\%)	QCLimit (\%)
Diesel	ND	2.50	2.43	97	50-130

SURROGATE PARAMETERS	SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (\%)	QCLimit (\%)
Bromobenzene	0.500	0.367	73	60-130
Hexacosane	0.125	0.139	111	60-130

MB: Method Blank sample LCS: Lab Control Sample

CLIENT	$:$ EUROFINS EATON ANALYTICAL
PROJECT	$: 989412$
BATCH NO.	$: 22 \mathrm{~B} 260$
METHOD	$: 3520 \mathrm{C} / 8015 \mathrm{~B}$

MATRIX	WATER		\% MOISTURE:NA
DILUTION FACTOR:	1	1	1
SAMPLE ID	202202240770	202202240770MS	202202240770MSD
LAB SAMPLE ID	22B260-01	22B260-01M	22B260-01s
Lab file id	LC01017A	LC01018A	LC01019A
date prepared	02/28/22 14:15	02/28/22 14:15	02/28/22 14:15
date analyzed	03/01/22 18:56	03/01/22 19:14	03/01/22 19:32
PREP BATCH	22DSB035W	22DSB035W	22DSB035W
CALIbration ref:	LC01004A	LC01004A	LC01004A

ACCESSION:

PARAMETERS	PSResull (mg/L)	SpikeAnll (mg/L)	MSResull (mg/L)	MSRec (\%)	SuikeAnt (mg/L)	MSDResult (mg/L)	MSDREC (\%)	$\begin{aligned} & \text { RPD } \\ & (\%) \end{aligned}$	$\begin{gathered} \text { QCLimit } \\ (\%) \end{gathered}$	MaxRPD (\%)
Diesel	ND	2.88	2.83	98	2.85	2.84	100	0	50-130	30

SURROGATE PARAMETERS	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (\%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (\%)	QCLimit (\%)
Bromobenzene	0.575	0.491	85	0.570	0.479	84	60-130
Hexacosane	0.144	0.160	111	0.142	0.159	112	60-130

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

METHOD 3520C/8015B
PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON	ANALYTICAL	Date Collected: 02/28/22 14:15		
Project : 989424		Date Received: 02/28/22		
Batch No. : 22 B 258		Date Extracted: 02/28/22 14:15		
Sample ID : MBLK1W		Date Analyzed: 03/01/22 17:05		
Lab Samp ID: DSB035WB		Dilution Factor: 1		
Lab File ID: LC01011A		Matrix: WATER		
Ext Btch ID: 22DSB035W		\% Moisture: NA		
Calib. Ref.: LC01005A		Instrument ID: D5		
	RESULTS	RL	MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
JP5	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	\%RECOVERY	QC LIMIT
Bromobenzene	0.311	0.500	62	60-130
Hexacosane	0.121	0.125	97	60-130

Notes:
RL : Reporting Limit
Parameter $\quad \mathrm{H}-\mathrm{C}$ Range
JP5 C8-C18
Reported ND at $R L$ quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount : 1000 ml Final Volume : 5ml
Prepared by : JMuert Analyzed by : SDeeso

EMAX QUALITY CONTROL DATA
LAB CONTROL SAMPLE ANALYSIS

MB: Method Blank sample LCS: Lab Control Sample

EMAX QUALITY CONTROL DATA

MS/MSD ANALYSIS

CLIENT	$:$ EUROFINS EATON ANALYTICAL
PROJECT	$: 989412$
BATCH NO.	$: 22 B 260$
METHOD	$: 3520 \mathrm{C} / 8015 \mathrm{~B}$

MATRIX	WATER		\% MOISTURE:NA
DILUTION FACTOR:	1	1	1
SAMPLE ID	202202240770	202202240770 MS	$202202240770 M S D$
LAB SAMPLE ID	22B260-01	22B260-01M	22B260-01S
LAB FILE ID	LC01017A	LC01020A	LC01021A
DATE PREPARED	02/28/22 14:15	02/28/22 14:15	02/28/22 14:15
DATE ANALYZED	03/01/22 18:56	03/01/22 19:50	03/01/22 20:09
PREP BATCH	22DSB035W	22DSB035W	220SB035W
CALIBRATION REF:	LC01005A	LC01005A	LC01005A

ACCESSION:

PARAMETERS	PSResull (mg/L)	SpikeAml (mg/L)	MSResult (mg/L)	MSRec (\%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (\%)	$\begin{aligned} & \text { RPD } \\ & \text { (\%) } \end{aligned}$	QCLimit (\%)	MaxRPD (\%)
JP5	ND	2.62	2.94	112	2.65	2.99	113	2	30-160	30

SURROGATE PARAMETERS	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (\%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (\%)	QCLimit (\%)
Bromobenzene	0.525	0.480	91	0.530	0.461	87	60-130
Hexacosane	0.131	0.137	104	0.132	0.143	108	60-130

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

METHOD 3520C/8015B
PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON	ANALYTICAL	Date Collected: 02/28/22 14:15		
Project : 989424		Date Received: 02/28/22		
Batch No. : 22 B 258		Date Extracted: 02/28/22 14:15		
Sample ID : MBLK1W		Date Analyzed: 03/01/22 17:05		
Lab Samp ID: DSB035WB		Dilution Factor: 1		
Lab File ID: LC01011A		Matrix: WATER		
Ext Btch ID: 22DSB035W		\% Moisture: NA		
Calib. Ref.: LC01006A		Instrument ID: D5		
	RESULTS	RL	MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
JP8	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	\%RECOVERY	QC LIMIT
Bromobenzene	0.311	0.500	62	60-130
Hexacosane	0.121	0.125	97	60-130

Notes:

RL : Reporting Limit
Parameter $\quad \mathrm{H}-\mathrm{C}$ Range
JP8 C8-C18
Reported ND at RL quantitated per pattern recognition.
Detection limits are reported relative to sample result significant figures.
Sample Amount $: 1000 \mathrm{ml}$
Prepared by $:$ Final Volume : 5 ml

EMAX QUALITY CONTROL DATA
LAB CONTROL SAMPLE ANALYSIS

NS EATON ANALYTICAL					
PROJECT : 989424					
BATCH NO. : 22B258					
METHOD : 3520C/8015B					
MATRIX	: WATER	\% MOISTUR	E:NA		
DILUTION FACTOR	: 1	1			
SAMPLE ID	: MBLK1W	LCS1W			
LAB SAMPLE ID	: DSB035WB	J88035WL			
LAB FILE ID	: LC01011A	LC01014A			
DATE PREPARED	: 02/28/22 14:15	02/28/22	14:15		
DATE ANALYZED	: 03/01/22 17:05	03/01/22	18:00		
PREP BATCH	: 22DSB035W	22DSB035W			
CALIBRATION REF	: LC01006A	LC01006A			
ACCESSION:					
PARAMETERS	MDResul t	SpikeAmt	LCSResult	LCSRec	QCLimit
	(mg/L)	(mg/L)	(mg/L)	(\%)	(\%)
JP8	ND	2.50	2.05	82	30-160
SURROGATE PARAMETERS		SpikeAmt	LCSResult	LCSRec	QCLimit
		(mg/L)	(mg/L)	(\%)	(\%)
Bromobenzene Hexacosane		0.500	0.453	91	60-130
		0.125	0.131	105	60-130

MB: Method Blank sample LCS: Lab Control Sample

EMAX QUALITY CONTROL DATA

MS/MSD ANALYSIS

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

April 13, 2022

Debbie Frank
Eurofins Eaton Analytical 750 Royal Oaks Drive
Suite 100
Monrovia, CA 91016-

Project Name: Folder \# 989424 Job \# 1000014
Physis Project ID: 1407003-225

Dear Debbie,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 2/28/2022. A total of 2 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier
714 602-5320
Extension 202
mistymercier@physislabs.com

PROJECT SAMPLE LIST

Eurofins Eaton Analytical
Folder \# 989424 Job \# 1000014

PHYSIS Project ID: 1407003-225
Total Samples: 2

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
95482	202202240795	A GULCH WELLS PUMP 1 (331-201-TPC	2/22/2022	9:30	Samplewater	Not Specified
95483	202202240797	A GULCH WELLS PUMP 2 (331-202-TPC $2 / 22 / 2022$	$9: 30$	Samplewater	Not Specified	

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY
LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~ 800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to
the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
\#	see Case Narrative
analyte not detected at or above the MDL	
E	analyte was detected in the procedural blank greater than 10 times the MDL analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
H	sample received and/or analyzed past the recommended holding time
analyte was detected at a concentration below the RL and above the MDL,	
reported value is estimated	
insufficient sample, analysis could not be performed	

CASE NARRATIVE

QUALIFIER NOTES

In addition to the use of analyte specific Physis Qualifier Codes where applicable, the following were also noted.

ND

MDL is listed due to report format restrictions; it is not used in reporting. Analytical results reported are ND at the RL.

PMTSS

ENVIRONMENTAL LABORATORIES, INC.
Project: Folder \# 989424 Job \#1000014

Base/Neutral Extractable Compounds											
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95482-R1	202202240795 AIEA	CH WEL	ix: Samp	wate			Sampled:	22-Feb-22	9:30	Received:	28-Feb-22
2-Chloronaphthalene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
2-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
3-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Bromophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chloroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chlorophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Aniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Benzidine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethoxy) methane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroisopropyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
D benzofuran	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Hexachloroethane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Nitrobenzene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodi-n-propylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodiphenylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22

PMTSS

ENVIRONMENTAL LABORATORIES, INC.
Project: Folder \# 989424 Job \# 1000014

Base/Neutral Extractable Compounds											
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 95483-R1	202202240797 AIEA	WE	ix: Sam	water			Sampled:	22-Feb-22	9:30	Received:	28-Feb-22
2-Chloronaphthalene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
2-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
3-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Bromophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chloroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Chlorophenylphenyl ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
4-Nitroaniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Aniline	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Benzidine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethoxy) methane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroethyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Bis(2-Chloroisopropyl) ether	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
D benzofuran	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Hexachloroethane	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
Nitrobenzene	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodi-n-propylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22
N-Nitrosodiphenylamine	EPA 625.1	$\mu \mathrm{g} / \mathrm{L}$	ND	1	0.05	0.1	Total		0-35094	01-Mar-22	24-Mar-22

PMTSS
ENVIRONMENTAL LABARATIRIES, INC.

N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
PHYSIS Project ID: 1407003-225
Client: Eurofins Eaton Analytical
Project: Folder \# 989424 Job \# 1000014

PMTSSSENVIRONMENTAL LABARATORIES, INC.
Innovative Solutions for Nature

Base/Neutral Extractable Compounds							QUALITY CONTROL REPORT						
ANALYTE F	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	ACCURACY		PRECISION		QA CODEC
							LEVEL	RESULT	\%	LIMITS		\% LIMITS	
Sample ID: 95481-BS	BS1 QAQC Procedural Blank				Matrix: BlankMatrix			ix Sampled:		Received:			
	Method: EPA 625.1				Batch ID: 0-35094			Prepared: 00-Mar-22			Analyzed: 24-Mar-22		
2-Chloronaphthalene	Total	0.806	1	0.05	0.1	ug/L	1	0	81	53-130\%	PASS		
2-Nitroaniline	Total	0.775	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	77	69-114\%	PASS		
3-Nitroaniline	Total	0.864	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	86	23-137\%	PASS		
4-Bromophenylphenyl ether	Total	0.918	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	92	61-132\%	PASS		
4 Chloroaniline	Total	1.09	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	109	50-150\%	PASS		
4Chlorophenylphenyl ether	Total	0.885	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	88	63-130\%	PASS		
4-Nitroaniline	Total	0.708	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	71	10-159\%	PASS		
Aniline	Total	0.738	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	74	50-150\%	PASS		
Benzidine	Total	96.3	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	100	0	96	0-125\%	PASS		
Bis(2-Chloroethoxy) methane	Total	0.797	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	80	66-122\%	PASS		
Bis(2-Chloroethyl) ether	Total	0.738	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	74	43-127\%	PASS		
Bis(2-Chloroisopropy) ether	Total	0.759	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	76	49-128\%	PASS		
Dibenzofuran	Total	0.857	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	86	50-150\%	PASS		
Hexachloroethane	Total	0.665	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	67	27-130\%	PASS		
Nitrobenzene	Total	0.674	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	67	54-111\%	PASS		
N-Nitrosodi-n-propylamine	Total	0.649	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	65	61-152\%	PASS		
N -Nitrosodiphenylamine	Total	0.85	1	0.05	0.1	$\mu \mathrm{g} / \mathrm{L}$	1	0	85	49-142\%	PASS		

PHYSIS Project ID: 1407003-225
Client: Eurofins Eaton Analytical
Project: Folder \# 989424 Job \# 1000014

PMTSSSENVIRONMENTAL LABARATORIES, INC.
PHYSIS Project ID: 1407003-225
Client: Eurofins Eaton Analytical
Project: Folder \# 989424 Job \# 1000014

Submittal Form

-REPORTING REQUIRMENTS: Do Not Combine Reports with any other samples submitted under different Folder Numbers!
Report \& Invoice must have the Folder \& 8 .
Report all quality control data according to Method. Include dates analyzed. Date extracted (f extracted) and Method reference on the report. Results must have Complete data \& QC with Approval Signature
Provide in each Report the
Specified StateCertificabon \# and por Samples from: HAWAII
th the

Time Matrix 0930 DW	Clip Code	PWSID	
Point ID:	Static ID:		

Invoices to; Eurofins Eaton Analytical, LLC
Accounts Payable 2425 New Holland Pike, Lancaster, Invoices to: Eurofins Eaton Analytical, LLC
Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605 report stating RL reporting only

TICs needed

Ship To:

'Physis Environmental Laboratories,
 Inc 1904
 Anaheim, CA 92806-6028
 Phone: 714-602-5320 Fax:

\section*{| Folder \#: | Report Due: |
| :--- | :--- |
| 989424 | $03 / 01 / 2022$ |}

EPA 625625 Base Neutral Extractable in ug/L
ID for reference onl
ELS PUMP 1 (331-201-TP071)
Sample Event:
Prep Method Analysis Requested
EPA 625625 Base Neutral Extractable in ug/L
AIEA GULCH WELLS PUMP 2 (331-202-TP072)
Prep Method Analysis Requested
625 Base Neutral Extractable in ug/L

Page 2 of 2

Sample Receipt Summary

Receiving Info

1. Initials Received By
2. Date Received:

\qquad
3. Time Received:
\qquad
4. Information: (Please circle)

- Client
- UPS
- FedEx
- GSO/GLS
- PHYSIS Driver:
- Area Fast
- DPS
i. Start Time: \qquad iii. Total Mileage:
ii. End Time: \qquad iv. Number of Pickups:
\qquad
\qquad

6. Container Information: (Please put the \# of containers or circle none)
Cooler

- _ Styrofoam Cooler
- ___ Boxes
- None
- __Carboys) - _ Carboy Trash Cans)
- Carboy Cap (s)
- Other
\qquad

7. What e of ice was used: (Please circle any that apply)

Wet Ice) - Blue Ice - Dry Ice
8. Randomly Selected Samples Temperature

- Water
- None

Inspection Info

1. Initials Inspected By:

Sample Integrity Upon Receipt:

1. $\operatorname{COC}(s)$ included and completely filled out \qquad

No
2. All sample containers arrived intact. \qquad
\qquad(re) 1 No
3. All samples listed on $\mathrm{COC}(\mathrm{s})$ are present.
4. Information on containers consistent with information on COC(s). \qquad
5. Correct containers and volume for all analyses indicated.
\square
6. All samples received within method holding time \qquad

7. Correct preservation used for all analyses indicated

8. Name of sampler included on $\mathrm{COC}(\mathrm{s})$

Notes:

Both samples have a hand written label thar both say AFE GulCH wills Pore 331-201-TP 071

[^0]: * Accredited in accordance with TNI 2016 and ISO/IEC 17025:2017.
 * Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis.
 * As applicable, this report consists of the cover page, State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms.
 * Test results relate only to the sample(s) tested.
 * Test results apply to the sample(s) as received, unless otherwise noted in the comments report (ISO/IEC 17025:2017).
 * This report shall not be reproduced except in full, without the written approval of the laboratory.
 * This report includes ISO/IEC 17025 and non-ISO 17025 accredited methods.

[^1]: 02/25/22 02/25/22 23:58
 (SW 8015B)
 (SUB)Gas Fraction Hydrocarbons
 ND

