BOARD OF WATER SUPPLY

CITY AND COUNTY OF HONOLULU 630 SOUTH BERETANIA STREET HONOLULU, HI 96843 www.boardofwatersupply.com

KIRK CALDWELL, MAYOR

BRYAN P. ANDAYA, Chair KAPUA SPROAT, Vice Chair DAVID C. HULIHEE KAY C. MATSUI RAY C. SOON

ROSS S. SASAMURA, Ex-Officio JADE T. BUTAY, Ex-Officio

ERNEST Y. W. LAU, P.E. Manager and Chief Engineer

ELLEN E. KITAMURA, P.E. Deputy Manager and Chief Engineer

Mr. Jeffrey T. Pearson, P.E. Deputy Director State of Hawaii Department of Land and Natural Resources Commission on Water Resources Management P.O. Box 621 Honolulu, Hawaii 96809

Dear Mr. Pearson:

Subject: Honolulu Board of Water Supply (BWS) Comments on the Department of the Navy (Navy) Technical Memorandum: Testing and Verification of Packer Integrity at RHMW11, Red Hill Bulk Fuel Storage Facility (RHBFSF) Joint Base Pearl Harbor-Hickam, Oahu, Hawaii, February 9, 2018 completed under Red Hill Administrative Order on Consent (AOC) Statement of Work (SOW) Sections 6 and 7

The BWS offers the following comments on the above referenced Technical Memorandum (Memo) (Navy, 2018) at the request of the Commission on Water Resources Management (CWRM) per your letter dated March 27, 2018 (CWRM, 2018). A copy of the Navy's Memo is enclosed as Attachment A for reference.

General Comments:

Our review of the Navy's Memo did not show sufficient data to support the report's conclusion that the Westbay sampling system successfully isolated specific subsurface sampling zones from each other at RHMW11 as discussed in the report's six areas listed below.

- 1. Evaluation of the grouted 10-inch and 5-inch blank casing;
- 2. Manufacturer's certification of packers;
- 3. Field packer inflation records;
- 4. Vertical pressure profiles;
- 5. Vertical temperature profiles; and,
- 6. Pneumatic testing of multiple zones within monitoring well RHMW11.

Our specific comments are below.

Specific Comments

1. Evaluation of the Grouted 10-inch and 5-inch Blank Casing (Page 3, Lines 22 – 30 and Page 4, Lines 1 - 3)

The Memo's evaluation of the grouted casing in monitoring well RHMW11 consists of very limited analysis as summarized in the statements: "Grout volumes during installation of both casings were consistent with calculated theoretical volumes" (Page 3, Lines 27 and 28) and "All evidence suggests that the cement-bentonite grout outside of the 10-inch casing and outside of the 5-inch inner casing successfully isolated deeper zones from the water from shallower zones within the borehole" (Page 4, Lines 1 through 3). The first statement of calculated theoretical volumes contradicts an earlier statement (Page 2, Lines 6 and 7) that states that "Both grout jobs were successful, with the actual volumes 6 used slightly exceeding the calculated theoretical volumes."

There are no grout calculations provided in the Memo to demonstrate that the injected grout volumes are consistent with or slightly exceeded calculated theoretical volumes. The BWS obtained the injected volumes from the boring log of RHMW11 and we calculated grout volumes using rudimentary assumptions. Our analysis indicates that the 550 gallons of grout injected at a depth of 165 feet is appreciably more than what theoretical calculations indicate is needed to fill the annulus with grout. To substantiate the claims of consistency between the injected grout volumes and the theoretical volumes, the report needs to include grout calculations along with justification of assumptions.

Among the assumptions that are important to calculating the amount of grout to successfully fill the annulus is how intervals of no core recovery affect the grouting process. An interval of no recovery could potentially represent a large void in the weathered or unweathered basalt where grout enters the basalt though a lava tube or a clinker zone. From a depth of 65 feet to 110 feet below ground surface (bgs) at RHMW11 there are six recorded no recovery intervals on the RHMW11 boring log. From a depth of 110 feet bgs to 165 feet bgs, there are ten recorded no recovery intervals. Many of these no recovery intervals are approximately 2 feet in total length, indicating substantial fractures or other void spaces. Among our concerns is that near the "no recovery" intervals in RHMW11, substantial grout was lost into large voids in the subsurface and an effective seal is not achieved between the well casing and the basalt. If this is the case, then the injected volumes may be substantially greater than the calculated theoretical volumes in order to effectively seal the annulus.

A common practice for checking whether an annulus has been properly grouted is to initiate a cement-bond log down a well casing. Cement-bond logs provide information on whether or not there is grout or voids against the outer diameter of the well casing. A cement-bond log is a regulatory requirement for wells in Texas that are required to be cased through useable groundwater. Given the large number of no-recovery zones in the log and the desire to seal and prevent hydraulic communication along the outside of well casing, a cement-bond log should be performed to demonstrate a successful grout of the annulus resulting in an effective seal. Without this information, how effective the steel casing in place at RHMW11 will always be in question.

2. Manufacturer's Packer Certification (Page 4, Lines 4 - 18)

We do not agree that a manufacturer certification is a line of evidence for having achieved a successful seal in the borehole. Such certification attests that the packer will inflate and should provide a seal but is not necessarily proof that a seal actually exists in the RHMW11 borehole. It would be appropriate if the packers were designed and tested to operate in boreholes that penetrate Hawaiian basalts like the Ko'olau Basalt. The Navy should clarify if Westbay has provided written assurances or recommendations for using their packers to isolate sampling zones in geological settings similar to the Ko'olau Basalt.

3. Packer Inflation Records (Page 4, Lines 19 - 37)

The Memo states that the packer inflation records indicate that all Westbay packers inflated normally and are providing effective annular seals between the monitoring zones (Page 4, Lines 36 and 37). The Memo notes that inflation plot for Packer No. 15 (Sheet 16, Attachment F) did not display a normal inflation pattern that includes a characteristic spike at the end (Page 4, Lines 30 through 35). This atypical response was attributed to an enlarged borehole diameter. Based on this information, the report statement "all of the Westbay packers inflated normally and are providing effective annual seals between the monitoring zones" is incorrect and contrary to the available information.

In order to support the statement of providing effective seals, additional information regarding the packing inflation and the caliper log should be discussed. The additional discussion should explain how that the abnormal inflation pattern at Packer No. 15 actually achieved a seal. Such a discussion should also cover the inflation plots for Packer No. 12 (Sheet 13, Attachment F); Packer No. 13 (Sheet 14, Attachment F); and, Packer No. 14 (Sheet 15, Attachment F). These Westbay packers show very similar inflation plots as Packer No. 15, but are not mentioned in this section of the memo and contradict the statement that "all" packers are providing effective seals.

4. Water Level Elevations Profiles Measured in Different Zones

On Page 5, Line 13, Table 2 outlines which water level elevations are reported for the Navyidentified 10 zones of RHMW11 (Zones 1, 2, 3, 4, 5, 6, 7, 8A, 8B, and 8C) during five separate measurement events (conducted in late November and late December 2017). On Memo Page 4, Lines 43 and 44, it is stated that the head differences between the zones (Table 2) supports the fact that the zones "are vertically isolated from one another". Head differences in Table 2 appear to suggest that there may in fact be only **5** separate "Zones" at RHMW11:

- 1. Zones 8C, 8B, 8A
- 2. Zone 7
- 3. Zone 6
- 4. Zones 5,4,3, & 2
- 5. Zone 1

The BWS needs more information to be able to evaluate if indeed there are 10 distinct "Zones" at RHMW11. The Memo provides almost no interpretation of why these "Zones" were considered isolated relative to head differences.

The Memo states on Page 4, Line 44 that in the upper three zones, water levels are still stabilizing due to the extremely low hydraulic conductivity of the saprolite that they are completed in. We agree that one explanation for the slow response is a low conductivity of material open to the sampling interval. But, it may not be the only reason. A contributory factor to the long equilibration times could be leakage between packers and perched water draining through a leaky grout seal. To confirm the Memo's conclusion, calculations should be presented to show that the pressure-time response observed in the three upper zones can be explained based on theoretical calculated responses for a low permeability material. A starting point for this analysis is to perform the analysis using the range of hydraulic conductivity of 2.87E-09 centimeters per second (cm/s) to 3.00E-8 cm/s reported for the saprolite.

5. Temperature Profiles Measured in the Different Zones

The Memo states on Line 7, Page 5, "Monitoring of temperature in the zones at 30-minute intervals since December 2017 shows stable temperatures in each zone (Figure 3); each zone temperature are different from those of other zones. This provides additional evidence of isolation between zones."

BWS review of Figure 3 does not support the above statements. The upper Zone 6 and Zone 8 have essentially the same temperature measurements, which are consistently lower than those for Zone 7. Also, the meaning of the word "stable" is unclear. Our review of the temperature for Zone 4 indicates that over the entire period of record, the temperate is primarily decreasing and that stable temperatures have only been approximated during the last few weeks of the measurement record. This trend is also present but less apparent for Zone 5. Based on these observations, data from Zones 8A, 8B, 8C, 6, 5, and 4 is contrary to the above statements. Moreover, some of these observations from these zones are consistent with the impacts associated with leaky Westbay packers.

Pneumatic Testing of Multiple Zones within the Well (Page 5, Lines 16 – 33; Page 6, Lines 1 – 46, and Page 7, Lines 1 – 25)

This pneumatic testing discussion is insufficient to support the conclusion that the Westbay zones are isolated and that no leakage is occurring around the packer seals. The section is basically a data dump of pressure plots with little analysis and is presented with too little information to perform an independent analysis of the testing. To effectively demonstrate that the packers are working properly, the Memo needs to include an analysis for the theoretical response at the transducers for the case of a leaky packer AND a properly sealed packer. Because of the combination of the high hydraulic conductivity basalt and the small volumes of water used for testing, the BWS is concerned that there is effectively no substantial difference in the responses for the case of a perfectly sealed packer and a leaky packer. For the large number of graphs (Figures 6 through 25) to be useful to supporting the conclusion that all

Westbay packers are working properly, the section needs to explain and demonstrate that the testing methodology used has been properly designed to identify if a packer is indeed leaking or not.

In the CWRM's solicitation memo, CWRM indicated concerns with two issues: 1) protection of the aquifer from well construction contamination; and, 2) how the Westbay system allows data to be collected and incorporated into the larger ground water monitoring network. CWRM believes that the grouting of the annular spaces around the conductor casing and internal 5-inch casing are sufficient to satisfy their first concern.

Based on our review, we found insufficient data to assure BWS that the aquifer is protected from well construction contamination because we question whether a sufficient amount of grout has been added to seal the annual spaces between the formation and the conductor casing. Incorporating the ground water data collected from the Westbay well into the database for the larger ground water monitoring network may be suspect because the zones identified by the Navy may not be isolated as the Navy Memo indicates.

Thank you for the opportunity to comment. If you have any questions, please feel free to call Erwin Kawata at 808-748-5080.

Very truly yours,

ERNEST Y. W. LAU, P.E. Manager and Chief Engineer

cc. Mr. Ryan Imata, P.E. Hawaii Department of Land and Natural Resources

References

Commission on Water Resources Management (CWRM). 2018. Red Hill Monitor Well 11 (State Well No. 3-2253-011). Solicitation Letter to Mr. Ernest Y.W. Lau, P.E. from Mr. Jeffrey T. Pearson, P.E. March 27.

Department of the Navy (Navy). 2018. Technical Memorandum: Testing and Verification of Packer Integrity at RHMW11, Red Hill Bulk Fuel Storage Facility (RHBFSF) Joint Base Pearl Harbor-Hickam, Oahu, Hawaii. February 9.

Enclosure

Attachment A Navy Technical Memorandum: Testing and Verification of Packer Integrity at RHMW11.

1	Technical Memorandum
2	Testing and Verification of Packer Integrity at RHMW11
3	Red Hill Bulk Fuel Storage Facility,
4	Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i
5	Naval Facilities Engineering Command, Hawaii, JBPHH HI
6	<i>February 9, 2018</i>

7 Introduction

8 This Technical Memorandum presents the results of testing and verification of packer integrity at 9 monitoring well RHMW11 for the Investigation and Remediation of Releases and Groundwater 10 Protection and Evaluation project at the Red Hill Bulk Fuel Storage Facility ("Facility"), Joint Base 11 Pearl Harbor-Hickam (JBPHH), O'ahu, Hawai'i. RHMW11 was constructed in November 2017 12 using the multi-level Westbay System in an open borehole.

13 **Purpose**

14 This memorandum presents multiple lines of evidence that demonstrate that discrete zones (e.g., 15 sample intervals) within the RHMW11 borehole are successfully isolated from one another. The Westbay System was installed so that measurements of formation fluid pressure, temperature, 16 17 hydraulic conductivity, and groundwater chemistry can be obtained from discrete zones at different 18 depths to establish a vertical profile and evaluate the potential for a hydraulic barrier or for preferential pathways to exist. The Westbay System allows flexibility in the construction of each 19 20 discrete zone (e.g., length, depth), so that all available information obtained during drilling can be 21 used to identify target intervals. The Westbay System has been used on many sites in numerous geologic settings for environmental investigations including investigations under the oversight of the 22 23 United States Environmental Protection Agency for characterizing a wide variety of contaminants 24 including volatile organic compounds and fuel-related constituents (Attachment A). Isolation of 25 discrete zones was accomplished using the Westbay System following a multi-step process. First, 26 specific well completion depth intervals were identified based on detailed borehole geologic and geophysical logs that would provide head measurements and water samples to meet the project 27 28 objectives. For each target depth interval, specific packer seat depths of competent, non-fractured 29 unweathered and saprolitic rock were selected. After assembling the well casing and packers and lowering the assembly to isolate the selected completion intervals, the packers were inflated to 30 tightly seat on the borehole wall. The effectiveness of the packer seals in isolating the well 31 32 completion intervals was then verified using several techniques, including:

- Evaluation of the grouted 10-inch and 5-inch blank casing
- Manufacturer's Certification of packers
- Field packer inflation records
- Vertical pressure profiles within the well
- Pneumatic testing of multiple zones within the well

38 RHMW11 Construction

Monitoring well RHMW11 was drilled and constructed during September 25 to November 21, 2017. It is located in South Hālawa Valley, north of the Red Hill Bulk Fuel Storage Facility (Figure 1). RHMW11 is a Westbay well that allows monitoring of multiple-depth discrete zones, and is described further in Overview of Westbay System Installed in RHMW11, below. Drilling activities included air knifing to a depth of 22.8 feet (ft) below ground surface (bgs), hollow-stem auger drilling with a California split-spoon sampler to a depth of 50 ft bgs, and continuous coring from 50

	Testing and Verification of Packer Integrity at RHMW11	
February 9, 2018	Red Hill Bulk Fuel Storage Facility, JBPHH, Oʻahu, Hawaiʻi	Page 2 of 57

1 ft bgs to 75 ft bgs. A 10-inch schedule 40 (SCH40) steel casing was grouted into the approximately 2 15.5-inch-diameter borehole using a cement-bentonite mix to a total depth of 75 ft bgs. Following 3 completion of grouting activities, an approximately 9.375-inch borehole was cored to a total depth of 4 165 ft bgs, and a 5-inch SCH40 steel casing was installed within the 10-inch steel casing and sealed 5 within the borehole and upper casing using a cement-bentonite mix with a grout basket connected to 6 the bottom of the 5-inch-diameter casing. Both grout jobs were successful, with the actual volumes 7 used slightly exceeding the calculated theoretical volumes. Following completion of construction of 8 the 5-inch inner casing, coring resumed to a total depth of approximately 492 ft bgs. Coring was 9 completed using a PQ core barrel with an outside diameter of 4.95 inches. The contact between alluvium and saprolite was observed at 68.5 ft bgs. The contact between saprolite and the regional 10 basalt aquifer (unweathered) was observed in the core at approximately 279 ft bgs. The depth to 11 water in the fully open borehole stabilized at approximately 192 ft bgs prior to installation of the 12 13 Westbay System. Geophysical logging was completed in the interval from 165 to 492 ft bgs. 14 Geophysical logging included the following suite of tools: Caliper, Optical Televiewer, Acoustic 15 Televiewer, Electric Log (long-normal, short-normal, and guard), fluid temperature and conductivity, 16 natural gamma, and spontaneous potential. Following completion of geophysical logging, the 17 Westbay System was designed and installed within the open borehole, as described below.

18 **Overview of Westbay System Installed in RHMW11**

19 The Westbay System is composed of a casing string with external packers installed at user-selected 20 positions to create annular seals in the borehole, thus creating multiples zones with the borehole. In 21 some cases, multiple redundant packers are placed between zones. Specialized ports are installed in the casing between the packers to provide hydraulic access to conduct routine monitoring activities 22 23 such as measurement of formation fluid pressure, collection of fluid samples, and performance of 24 hydraulic tests. The Westbay System is described in a brochure provided by the manufacturer 25 (Attachment B). A detailed technical description of the use and versatility for monitoring depth discrete zones within a single open borehole or well with multiple screen intervals is described in a 26 27 Westbay technical paper (Attachment C). Utilization of a Westbay System with the capability to 28 monitor multiple depth intervals can lead to investigation cost savings. This is described in further 29 detail in a journal article that describes investigation of an environmentally impacted site in Southern 30 California (Melchior and Cutler 1993). Finally, use of the Westbay System in a basalt geologic 31 environment as well as fractured rock environments is described in a Scientific Investigations Report 32 published by the United States Geological Survey (Bartholomay, Hopkins, and Maimer 2015) and in 33 scientific journals (Sterling et al. 2005; Fitzgerald 1988).

34 Eight discrete zones were selected for the Westbay System in RHMW11. These zones were selected based on observed lithology, geophysical logging, and regional aquifer features including the depth 35 36 of the expected basal aquifer water table. The RHMW11 boring log and results of geophysical 37 logging are provided in Attachment D. The caliper log was useful for selection of suitable zones for 38 locating intervals suitable for Westbay System Packers. The optical and acoustic televiewer logs 39 provided confirmation of features observed in continuous core, including clinker zones and lava tubes. The temperature and fluid conductivity logs were useful for understanding the depth of the 40 41 transition from fresh water to brackish water. The system was constructed from the bottom up and 42 includes the following zones:

- Zones 1, 2, 3, and 5 are the deeper zones located within basalt that is part of the regional basal aquifer and target key features (e.g., clinker, fracture, lava tube) that could serve as preferential pathways within the basalt.
- 46 Zone 4 was established to evaluate groundwater chemistry at the freshwater/brackish water
 47 interface.

Testing and Verification of Packer Integrity at RHMW11February 9, 2018Red Hill Bulk Fuel Storage Facility, JBPHH, Oʻahu, Hawaiʻi

- Zone 6 was established in the lower portion of the saprolite to evaluate whether it acts as a hydraulic barrier.
- Zone 7 was established to monitor a relict clinker zone in the saprolite to see if such relict features potentially have higher permeability relative to the surrounding saprolite.
- 5 Zone 8 was established at the estimated depth of the regional basal aquifer water table at the 6 time of drilling with an open borehole extending from the low-permeability saprolite and 7 into basalt.
- 8 Details regarding each discrete zone and the rationale for selecting each zone are summarized in9 Table 1.

Each zone is equipped with a pumping port as well as a sampling port. Three sampling ports were installed in the uppermost zone to allow sampling close to the water table, as well as above the water table (e.g., soil gas). A summary of the sampling and pumping ports for each zone is presented in Table 1. Packer depth intervals were selected to allow isolation of zones of interest, and were installed in the competent sections of the borehole to ensure isolation of the zones within the borehole. A schematic of the Westbay System constructed within the RHMW11 borehole shows the location of all sample ports, pumping ports, and packer intervals (Figure 2).

Sampling Zone	Zone ID	Sample Port Depth (ft bgs)	Pumping Port Depth (ft bgs)	Rationale
159.30-204.5	Zone 8C	169.30	N/A	Unsaturated clinker zone above piezometric surface
	Zone 8B	189.30	194.30	Zone near current piezometric surface
	Zone 8A	200.50	204.50	Zone near current piezometric surface
209.80-239.8	Zone 7	234.80	239.80	Clinker zone in saprolite
245.00-255.50	Zone 6	250.00	255.00	Saprolite
277.30-290.30	Zone 5	285.30	290.30	Lava tube
330.50-342.8	Zone 4	330.50	335.50	Fresh to brackish water boundary based on geophysical logging
347.80-367.00	Zone 3	357.80	362.80	Intensely fractured zone in pāhoehoe
394.00-420.30	Zone 2	396.00	401.00	Clinker zones
450.30-469.50	Zone 1	459.30	464.30	Clinker zones

17 Table 1: Summary of Sampling and Pumping Ports for RHMW11

18 N/A not applicable

19 Independent Lines of Evidence for Proper Seals Between Zones

Multiple lines of evidence indicate that the eight discrete sampling zones in RHMW11 are isolated from one another. Each of these lines of evidence is discussed below.

22 GROUTED 10-INCH- AND 5-INCH-DIAMETER CASING STRINGS

23 As previously described, a 10-inch casing was installed to a total depth of 75 ft bgs to isolate the 24 valley fill alluvium from the underlying saprolite. This casing was grouted into place using a 25 cement-bentonite mix. A second casing was subsequently installed within the 10-inch casing to a 26 total depth of 165 ft bgs. This casing was also grouted into place using a cement-bentonite mixture. 27 Grout volumes during installation of both casings were consistent with calculated theoretical volumes. No grout was seen in the open borehole below the bottom of the 5-inch inner casing on 28 29 either video or optical televiewer logs. This suggests that the cement basket at the bottom of the 30 5-inch casing allowed successful completion of the grout job.

	Testing and Verification of Packer Integrity at R	PHMW11
February 9, 2018	Red Hill Bulk Fuel Storage Facility, JBPHH, O'ah	u, Hawaiʻi Page 4 of 57

- 1 CONCLUSION: All evidence suggests that the cement-bentonite grout outside of the 10-inch casing
- and outside of the 5-inch inner casing successfully isolated deeper zones from water from shallower
 zones within the borehole.

4 MANUFACTURER'S PACKER CERTIFICATION

5 All Westbay packers are tested by Westbay and are certified for use as part of the Westbay System. Each packer is assigned a unique serial number for traceability of manufacturing test results. The 6 7 serial number of each packer and its position in the Westbay System completion are recorded on the 8 Westbay Installation Log. At the time of installation, each packer is inspected in the field by an 9 onsite Westbay technician. Each packer installed in RHMW11 as part of the Westbay System was 10 approved for use by the Westbay technician. In addition, Westbay provided a letter for the RHMW11 11 packers, which is a summary of packer certifications (Attachment E). This summary of packer 12 certification lists the unique RHMW11 packer number, which piece of the Westbay System casing it is located on, the serial number for the specific packer, and the results of Westbay testing of that 13 14 specific packer during assembly of the packer (e.g., connecting the packer "gland" to the Westbay 15 System casing. The traceability number provides a cross-reference to the gland manufacturer's lot 16 number and gland manufacturing date.

17 CONCLUSION: All packers installed in RHMW11 met both the manufacturer's and Westbay's 18 certification requirements.

19 PACKER INFLATION RECORDS

20 As the Westbay System is constructed, packers are permanently inflated with water supplied by a 21 surface-based inflation apparatus. Packers are inflated individually beginning with the lowermost. 22 The applied inflation pressure and the injected volume are measured with each incremental addition 23 of water during inflation and recorded and plotted for each packer on a Packer Inflation Data Sheet. 24 The measurement of inflation pressure is documentation of contact of the packer element with the 25 borehole wall. The plot of pressure vs. volume has a characteristic shape that is related to inflation 26 pressure and borehole diameter. Borehole diameter is variable, so the actual amount of water used to 27 inflate each packer is variable. However, at smaller borehole diameters, a characteristic pressure 28 'spike' is seen at the end of the inflation, indicating that inflation is complete. Such a spike may not 29 be observed in sections of the borehole with a slightly enlarged diameter.

A total of 18 packers were inflated in RHMW11, and all inflated normally. Of the 18, only one packer (#15) did not show the previously described pressure increase (spike) at the end of inflation,

- thus confirming caliper log data indicating a section of slightly enlarged borehole diameter. This does not indicate an incomplete seal. Furthermore, packer #15 is one of two packers (#14 and #15) that isolate the uppermost sample zone in RHMW11 (Zone 8) from the next vertical zone (Zone 7).
- 35 Packer inflation records for RHMW11 are provided in Attachment F.
- 36 CONCLUSION: The Packer Inflation Records indicate that all of the Westbay packers inflated 37 normally and are providing effective annular seals between the monitoring zones.

38 VERTICAL PRESSURE AND TEMPERATURE PROFILES

Vertical pressure profiles (spot measurements of formation fluid pressure) were measured in RHMW11 on several different days. In general, the bottom five zones in the well, which are

41 completed in the generally unweathered regional basalt aquifer, are equilibrated from pre-installation

- 42 hydraulic disturbance. A downward vertical gradient has been observed in multiple pressure profiles
- 43 (Table 2). This is consistent with the conceptual site model. Head differences between the zones
- support the fact that they are vertically isolated from one another. In the upper three zones, water
- 45 levels are still stabilizing due to the extremely low hydraulic conductivity of the saprolite that they

1 are completed in. Hydraulic conductivity was measured in the laboratory for three samples collected 2 from the RHMW11 borehole using ASTM Method D5084-10. These samples were collected from 3 the following depth intervals: 162.6–163.6, 174.3–175.0, and 189.5–190.0 ft bgs. The laboratory-4 reported range of hydraulic conductivity for these three samples of 2.87E-09 to 3.00E-08 centimeters 5 per second (cm/sec). Even though these water levels in the upper three zones do not represent 6 steady-state conditions, consistent head differences between each of them demonstrate that they are 7 isolated from one another. Monitoring of temperature in the zones at 30-minute intervals since 8 December 2017 shows stable temperatures in each zone; each zone's temperatures are different from

9 those of the other zones (Figure 3). This provides additional evidence of isolation between zones.

10 CONCLUSION: The pressure profile data and calculated formation heads along with long-term

11 temperature differences between zones indicate that effective annular seals are present between each

12 of the monitoring zones.

		Water Level Elevation (ft msl)				
Zone	Port Depth (ft bgs)	11/20/2017	11/21/2017	11/27/2017	12/6/2017	12/29/2017
Zone 8C	169.24	42.39	67.84	85.61	NM	NM
Zone 8B	189.23	31.68	67.67	85.60	NM	NM
Zone 8A	200.42	21.26	67.48	85.61	90.93	98.92
Zone 7	234.69	19.99	41.89	57.58	61.00	76.73
Zone 6	249.88	20.03	40.79	55.90	59.81	75.40
Zone 5	285.15	19.89	20.26	20.26	19.96	20.10
Zone 4	330.31	19.78	20.13	20.13	19.89	20.03
Zone 3	357.60	19.61	19.98	19.95	19.72	19.86
Zone 2	395.77	19.46	19.90	19.85	19.85	19.99
Zone 1	459.03	19.10	19.59	19.59	19.43	19.61

13 **Table 2: Water Level Elevations During Pressure Profiling**

14 15 Note: Uses an approximate MP elevation of 211.28.

NM not measured

16 **PNEUMATIC TESTING**

17 Pneumatic testing was completed in Zones 2, 4, 6, 7, and 8 to further demonstrate isolation between 18 zones within the well. It was not necessary to test every zone in the well, as pressure monitoring was 19 conducted in all zones during all pneumatic testing. To complete pneumatic testing, the pumping 20 port in the zone of interest is opened, and water from the zone is allowed to enter the Westbay Center 21 Tube. Once pressure in the Westbay Center Tube is equilibrated with the formation in the zone of 22 interest, water is displaced from the tube into the formation by applying nitrogen gas pressure. This 23 effectively pushes the water level in the Westbay Center Tube down, and the water that was in the 24 tube is forced into the formation. When this happens, formation pressure increases and dissipates at a 25 rate that is a function of the hydraulic conductivity of the zone. The pressure created by depressing 26 the water level in the Westbay Center Tube dissipates very quickly in zones with high hydraulic 27 conductivity (Zones 1–5), and slowly in zones with low hydraulic conductivity (Zones 6–8). Once 28 pressure in the Westbay Center Tube is equilibrated with the formation pressure (e.g., the pressure 29 increase in the formation has dissipated), the Westbay Center Tube is quickly vented. The Westbay 30 Center Tube is vented by opening a valve at the surface that allows the nitrogen to be released to the 31 atmosphere. This rapid venting is analogous to removing a slug of water from the zone, and results in 32 a pressure drop within the formation. The magnitude of the drop and the period of time required for 33 water levels in the zone to re-equilibrate are related to the hydraulic conductivity of the formation

- Page 6 of 57
- properties of the zone being monitored. No response in adjacent zones to pressure changes in the 1 2 zone of interest confirms that they are isolated from one another.

3 Both Zones 2 and 4 are completed in the regional basalt aquifer, with very high hydraulic 4 conductivity. Zones 6, 7, and 8 are all within the saprolite, which has an extremely low hydraulic 5 conductivity. Testing in Zones 2 and 4 demonstrates effective isolation between Zones 1 through 5. 6 In addition, a "compliance effect" is observed in Zones 6, 7, and 8 during all testing, including 7 testing of the second-deepest zone (Zone 2). This compliance effect is a common occurrence in 8 low-permeability materials and is due to the fact that all of the packers are non-rigid, flexing very 9 slightly in response to pressurization and depressurization of a different zone. This effect is 10 highlighted in Zones 6, 7, 8, as the pressure applied by the flexing of the packers cannot readily dissipate into the surrounding formation. A schematic that shows the process of pneumatic testing in 11 12 any zone is provided on Figure 4.

13 CONCLUSION: The results of pneumatic testing document that effective annular seals are present 14 between each of the monitoring zones.

15 **ZONE 2 PNEUMATIC TESTING**

16 Pneumatic Testing in Zone 2 included pressurization and venting of the zone at approximately 17 10, 20, and 40 pounds per square inch (psi). The second test, which was intended to be at 20 psi, was aborted because of failure of a seal at the wellhead. This failure was addressed in the field, and 18 19 testing resumed. The response to pressurization and depressurization of the Westbay Center Tube 20 and Zone 2 is shown on Figure 5. Response to pneumatic testing in Zone 2 and in adjacent Zones 1 21 and 3 is shown on Figure 6. No response was observed in Zones 1 or 3 associated with testing in 22 Zone 2. A compliance effect is noted in Zones 6, 7, and 8 to testing in Zone 2, the second-deepest 23 zone. Compliance effects in Zones 6, 7, and 8 were observed during every pneumatic test of every 24 tested zone. Pneumatic testing in Zone 2 demonstrates that this zone is effectively isolated from

25 Zones 1 and 3.

26 **ZONE 4 PNEUMATIC TESTING**

27 Pneumatic Testing in Zone 4 included pressurization and venting of the zone at approximately 28 10, 20, and 40 psi. The pumping port in Zone 4 was opened, and four pressure tests were completed 29 (twice at approximately 40 psi). As was the case during testing in Zone 2, compliance effects were 30 observed in the low-hydraulic-conductivity Zones (6, 7, and 8). Response to pressurization and 31 depressurization of the Westbay Center Tube and Zone 4 is shown on Figure 7. Response to 32 pneumatic testing in Zone 4 and in adjacent Zones 3 and 5 is shown on Figure 8. Pneumatic testing 33 in Zone 4 demonstrates that this zone is effectively isolated from Zones 3 and 5.

34 **ZONE 6 PNEUMATIC TESTING**

35 Pneumatic Testing in Zone 6 included pressurization and venting of the zone at approximately 5 psi 36 (two tests) and 10 psi. Only three tests were performed in this zone over the course of two field days 37 because equalization of the pressure in the zone after pressurization of the Westbay Center Tube took 38 several hours. This is related to the low hydraulic conductivity of the materials isolated within the 39 zone. The response to pressurization and depressurization of the Westbay Center Tube and Zone 6 is 40 shown for two separate tests on Figure 9 and Figure 13. Corresponding response to pneumatic testing 41 in Zone 6 and in adjacent Zone 5 is shown on Figure 10 and Figure 14. Corresponding response to 42 pneumatic testing in Zone 6 in adjacent Zone 7 is shown on Figure 11 and Figure 15. Testing in 43 Zone 6 resulted in compliance effects in both Zone 7 (Figure 11 and Figure 15) and Zone 8 (Figure 12 and Figure 16). Because the hydraulic conductivities of Zones 6 and 7 are very low, the 44 45 compliance effects are most pronounced in those two zones. The hydraulic conductivity of Zone 8 46 appears to be slightly higher than Zones 6 and 7, and the compliance effect is muted; pressure February 9, 2018

dissipates from this zone more quickly than the other zones completed in the saprolite. Despite a very large compliance effect seen in Zone 7, the magnitude of the effect is less than the magnitude of the change in Zone 6 associated with testing in Zone 6. This confirms that the zones are isolated from one another. No response to testing of Zone 6 was observed in Zone 5, confirming that Zone 6 is successfully isolated from Zones 5 and 7.

6 ZONE 7 PNEUMATIC TESTING

7 Pneumatic Testing in Zone 7 consisted of two tests over two days. Zone 7 was tested at 8 approximately 5 psi and 10 psi. Data from execution of the 5 psi test are incomplete due to an 9 incomplete data set, so figures related to testing of the zone at approximately 10 psi are provided. 10 The response to pressurization and depressurization of the Westbay Center Tube and Zone 7 is shown on Figure 17. The compliance effects described previously were observed in Zones 6 and 8 11 12 associated with testing in Zone 7 (Figure 18 and Figure 19). The hydraulic conductivity in Zone 7 13 appears to be the lowest of all the zones. The magnitude of the response in the adjacent zones due to 14 the compliance effect varies, indicating that Zone 7 is successfully isolated from Zones 6 and 8.

15 ZONE 8 PNEUMATIC TESTING

16 Pneumatic Testing in Zone 8 consisted of two tests over two days. Pneumatic Testing of Zones 6 17 and 7 demonstrated isolation of Zone 8 from those zones. Testing in Zone 8 was completed for confirmation purposes, to demonstrate compliance effects in other zones, and to gather data for 18 19 evaluation of hydraulic conductivity. Zone 8 was tested at approximately 10 psi and 15 psi. The 20 response to pressurization and depressurization of the Westbay Center Tube and Zone 8 is shown for 21 two separate tests on Figure 20 and Figure 23. Corresponding response and compliance effects to 22 pneumatic testing in Zone 8 and in Zone 6 are shown on Figure 21 and Figure 24. Corresponding 23 response and compliance effects to pneumatic testing in Zone 8 in adjacent Zone 7 are shown on 24 Figure 22 and Figure 25. The magnitude of the response in Zones 6 and 7 varies, indicating that 25 Zone 8 is isolated from all other zones.

26 Summary

Multiple lines of evidence have been evaluated to assess isolation between zones. A summary of the lines of evidence is presented in Table 3. All lines of evidence, which complement each other, indicate that effective annular seals are present between each of the eight zones in RHMW11.

Zone Identifier	Seal Number	Manufacturer's Certification	Packer Inflation Records	Pressure Profile	Pneumatic Testing	Annular Seal Present?
Zone 8	7-8	+	+	+	+	Yes
Zone 7	6-7	+	+	+	+	Yes
Zone 6	5-6	+	+	+	+	Yes
Zone 5	4-5	+	+	+	+	Yes
Zone 4	3-4	+	+	+	+	Yes
Zone 3	2-3	+	+	+	+	Yes
Zone 2	1-2	+	+	+	+	Yes

30 Table 3: Lines of Evidence Summary

31 **References**

32 Bartholomay, R. C., C. B. Hopkins, and N. V. Maimer. 2015. Chemical Constituents in 33 Groundwater from Multiple Zones in the Eastern Snake River Plain Aquifer, Idaho National

- *Laboratory, Idaho, 2009–13.* Scientific Investigations Report 2015–5002. Prepared in
 cooperation with the U.S. Department of Energy, DOE/ID-22232. U.S. Geological Survey.
- Energy Information Administration, United States (EIA). 2016. Trends in U.S. Oil and Natural Gas
 Upstream Costs. U.S. Department of Energy. March.
- Fitzgerald, L. J. 1988. *Investigative Approach for a Contaminated Bedrock Aquifer in New England*, *USA*. In: Proceedings of the Fourth Canadian/American Conference on Hydrogeology—Fluid
 Flow, Heat Transfer and Mass Transport in Fractured Rock, Banff, Alberta, Canada, June 21–24,
 1988: Dublin, Ohio, National Water Well Association, p. 245–250.
- 9 Melchior, D., and M. Cutler. 1993. "Deep Down Cost Reductions." Water Environment &
 10 Technology 5(10) (October).
- 11 Sterling, S. N., B. L. Parker, J. A. Cherry, J. H. Williams, J. W. Lane Jr., and F. P. Haeni. 2005.
- 12 "Vertical Cross Contamination of Trichloroethylene in a Borehole in Fractured Sandstone

13 Authors." *Groundwater* 43(4): 557–573.

- 14 Attachment A Westbay Environmental Projects for U.S. Environmental Protection Agency
- 15 Attachment B Westbay System Brochure
- 16 Attachment C Westbay System Technical Paper
- 17 Attachment D RHMW11 Boring Log and Geophysical Record of Borehole
- 18 Attachment E Westbay System Summary of Model 0235 Packer Certification
- 19 Attachment F Packer Inflation Records

S:\Projects\NAVFAC PAC\CLEAN IV\60481245CTO 0053\900-Work\921 Graphics\Well Logs\RHMW11_SummaryCompLog.ai

Figure 2 RHMW11 - Summary Completion Log Technical Memorandum, Testing and Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility JBPHH, O'ahu, Hawai'i

Figure 3 RHMW11 - Temperature in Zones Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 5 Water Level Response in Zone 2 During Pneumatic Testing Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 6 Water Level Response in Zones 1, 2, and 3 to Pneumatic Testing in Zone 2 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 7 Water Level Response in Zone 4 During Pneumatic Testing Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 8 Water Level Response in Zones 3, 4, and 5 to Pneumatic Testing in Zone 4 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 9 Water Level Response in Zone 6 During Pneumatic Testing at Approximately 5 psi Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 10 Water Level Response in Zones 5 and 6 to Pneumatic Testing in Zone 6 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 11 Water Level Response in Zones 6 and 7 to Pneumatic Testing in Zone 6 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 12 Water Level Response in Zones 6 and 8 to Pneumatic Testing in Zone 6 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 13 Water Level Response in Zone 6 During Pneumatic Testing at Approximately 10 psi Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 14 Water Level Response in Zones 5 and 6 to Pneumatic Testing in Zone 6 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 15 Water Level Response in Zones 6 and 7 to Pneumatic Testing in Zone 6 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 16 Water Level Response in Zones 6 and 8 to Pneumatic Testing in Zone 6 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 17 Water Level Response in Zone 7 During Pneumatic Testing at Approximately 10 psi Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 18 Water Level Response in Zones 6 and 7 to Pneumatic Testing in Zone 7 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 19 Water Level Response in Zones 7 and 8 to Pneumatic Testing in Zone 7 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 20 Water Level Response in Zone 8 During Pneumatic Testing at Approximately 10 psi Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 21 Water Level Response in Zones 6 and 8 to Pneumatic Testing in Zone 8 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 22 Water Level Response in Zones 7 and 8 to Pneumatic Testing in Zone 8 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 23 Water Level Response in Zone 8 During Pneumatic Testing at Approximately 15 psi Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 24 Water Level Response in Zones 6 and 8 to Pneumatic Testing in Zone 8 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Figure 25 Water Level Response in Zones 7 and 8 to Pneumatic Testing in Zone 8 Technical Memorandum, Verification of Packer Integrity at RHMW11 Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i

Attachment A	
Westbay Environmental Project	
for U.S. Environmental Protection Agence	

Westbay Environmental Projects

U.S. EPA Region 1

Connecticut Yankee Atomic Power, East Hampton, CT

Clients: CH2M Hill and Connecticut Yankee Atomic Power Company

Start Date: 2004

Investigation and monitoring of groundwater conditions in fractured rock surrounding a superfund hazardous waste site.

Sullivan's Ledge Superfund Site, New Bedford, MA

Clients: Mabbett Environmental, O'Brien & Gere Engineers and Ebasco Services for U.S. EPA Start Date: 1988

Investigation and monitoring of groundwater conditions in fractured rock surrounding a superfund hazardous waste site.

U.S. EPA Region 2

Niagara Falls Regional Hydrogeology Study, NY

Client: United States Geological Survey, Ithaca, NY for U.S. EPA

Start Date: 1987

Characterization for a regional groundwater model to provide boundary conditions for local flow models at hazardous waste sites in Niagara Falls, NY. Geologic materials consist of a sedimentary sequence including limestones and dolomites (some karst) overlain by glacial drift and alluvium. The project was funded and reviewed by U.S. EPA Superfund.

Industrial Park, Vega Alta, Puerto Rico

Clients: Bechtel Environmental Inc., Geraghty & Miller and Unisys

Start Date: 1989

Characterization of groundwater conditions in a karst limestone underlying an NPL site. Bechtel installed 20 Westbay System monitoring wells in 1989. Geraghty & Miller later took over operation of the monitoring system and installed three additional wells. The wells continue in operation.

Higgins Farm Superfund Site, Princeton, NJ

Client: Sevenson Environmental and U.S. Army Corps of Engineers for U.S. EPA

Start Date: 2000

Characterization and monitoring of groundwater conditions in fractured bedrock underlying an NPL site.

UTC Facility, Hawthorne, NJ

Client: MACTEC, ARCADIS

Start Date: 2005

Characterization and monitoring of groundwater conditions in fractured bedrock. The wells continue in operation.

Industrial Facility, Northvale, NJ

Client: ARCADIS

Start Date: 2005

Characterization and monitoring of groundwater conditions in fractured bedrock.

Industrial Facility, New Brunswick, NJ

Client: ERM Northeast

Start Date: 2004

Characterization and monitoring of groundwater conditions in fractured bedrock. The wells continue in operation.

Jackson Steel Superfund Site, Long Island, NY

Client: Bowser Morner and CH2M Hill for U.S. EPA, NY

Start Date: 2002

Characterization and monitoring of groundwater conditions in unconsolidated sands. The wells continue in operation.

Old Roosevelt Field Superfund Site, Long Island, NY

Client: Various Drilling Companies and CDM for U.S. EPA, NY

Start Date: 2005

Characterization and monitoring of groundwater conditions in unconsolidated sands. Westbay wells installed in various phases through to 2011 and continue in operation.

Cayuga County Superfund Site, NY

Client: Lockheed Martin, Various Drilling Companies and CDM for U.S. EPA, NY

Start Date: 2004

Characterization and monitoring of groundwater conditions in fractured bedrock. The wells continue in operation.

U.S. EPA Region 3

Industrial Facility, Crozet, VA

Client: Groundwater & Environmental Services

Start Date: 2005

Characterization and monitoring of groundwater conditions in fractured bedrock. The wells continue in operation.

Industrial Facility, Belle, WV

Client: DuPont, Wilmington, DE

Start Date: 1994

Installation of multilevel wells to characterize and monitor conditions around an industrial plant in Belle, WV. Geologic materials consist of a sedimentary sequence of sandstones and shales. Westbay wells were installed in various phases and operation continues.

Kendall Amalie Refinery, Bradford, PA

Client: R.E. Wright Engineers

Start Date: 1994

Groundwater characterization and monitoring for remediation activities at an oil refinery.

Butz Landfill Superfund Site, Tannersville, PA

Clients: U.S. Bureau of Reclamation, Roy F. Weston and Tetra Tech NUS for U.S. EPA

Start Date: 1996

Groundwater characterization and monitoring for remedial investigation/feasibility study in fractured rock. The wells continue in operation.

Berkely Products Site, Ephrata, PA

Clients: Gannet Fleming and Tetra Tech NUS, Inc. for U.S. EPA

Start Date: 1997

Installation of multilevel monitoring wells for monitoring related to closure of a landfill at a superfund site. The wells continue in operation.

Crossley Farms Site, Huffs Church, PA

Clients: Tetra Tech NUS, Inc. for U.S. EPA

Start Date: 1999

Installation of multilevel monitoring wells for characterization and monitoring at a superfund site.

Hunterstown Road Site, Gettysburg, PA

Client: Viacom

Start Date: 2001

Characterization and monitoring of groundwater conditions in a fractured rock environment.

Safety Light Site, Bloomsburg, PA

Client: Earth Data Northeast and Tetra Tech NUS

Start Date: 2007

Characterization and monitoring of groundwater conditions in a fractured rock environment.

Galaxy Spectron Superfund Site, Elkton, MD

Client: Earth Data Northeast, O'Brien & Gere and ERM

Start Date: 2000

Characterization and monitoring of groundwater conditions in a fractured rock environment. Wells installed in multiple phases and continue in operation.

U.S. EPA Region 4

U.S. Department of Energy Facilities, Oak Ridge, TN

Clients: Bechtel Jacobs and Lockheed Martin Energy Systems Group for U.S. DOE

Start Date: 1989

Characterization of groundwater conditions in a sedimentary rock environment including limestones at the X-10 and Y-12 plants and neighboring areas. Multiple installations in various phases of work. The wells continue in operation.

Savannah River Site, Aiken, SC

Client: Savannah River Nuclear Solutions, Washington Savannah River Company and Westinghouse Savannah River Company for U.S. DOE

Start Date: 1999

Characterization and monitoring of groundwater conditions in alluvial sediments. Westbay wells installed in multiple phases of work and continue in operation.

Cabot Carbon/Koppers Superfund Site, Gainesville, FL

Client: GeoTrans and Field & Technical Services

Start Date: 2005

Characterization and monitoring of groundwater conditions in limestone aquifer underlying a superfund site. Wells installed in various phases and continue in operation.

Waste Site, Ft. Hartford, KY

Client: Ensafe, Inc.

Start Date: 1993

Characterization of groundwater conditions in a sedimentary rock environment at a superfund site.

U.S. EPA Region 5

Industrial Facility, Cottage Grove, WI

Client: GeoTrans Inc. and Hydrite Chemical Co.

Start Date: 1990

Characterization of groundwater conditions in a weathered sedimentary rock environment (including limestones) as part of a RCRA corrective action plan. Westbay System wells installed and MOSDAX probes used for automated monitoring of multiple zones during a pumping test. Wells installed in multiple phases and continue in operation.

Industrial Facility, Madison, WI

Client: URS Corporation

Start Date: 2007

Characterization of groundwater conditions in a fractured rock environment.

Continental Steel Plant, Kokomo, IN

Client: ABB Environmental Services, Inc. Start Date: 1993 Characterization of groundwater conditions in a sedimentary rock environment.

BP-Amoco Terminal, Spring Valley, MN

Client: Delta Environmental

Start Date: 1994

Groundwater characterization and monitoring at a petroleum terminal. Additional wells installed in later phases of work.

U.S. EPA Region 6

Waste Facility, Criner, OK

Client: Hardage Steering Committee

Start Date: 1987

Investigation and monitoring of groundwater conditions in low permeability shales underlying an NPL site.

Tinker Air Force Base, Oklahoma City, OK

Client: Science Applications International Corporation Start Date: 2009 Investigation and monitoring of groundwater conditions in sandstone & shale at an air force base.

NASA White Sands Test Facility, Las Cruces, NM

Clients: Honeywell Technology Solutions Company, BDM International (fka GCL) and NASA Start Date: 1990

Characterization and monitoring of groundwater conditions in the vicinity of NASA's White Sands Test Facility near Las Cruces, New Mexico. The geology consists of coarse grained alluvium underlain by fractured volcanic and sedimentary bedrock. Multiple installations in various phases of work. The wells continue in operation.

South Valley Superfund Site, Albuquerque, NM

Clients: The Axis Group, BDM International (fka GCL) and General Electric Aircraft Engines Start Date: 1991

Characterization and monitoring of groundwater conditions in alluvial deposits in the vicinity of a GEAE plant in Albuquerque, New Mexico. The wells continue in operation.

Los Alamos National Laboratory, Los Alamos, NM

Clients: Los Alamos National Security, Kleinfelder, Washington Group International and Los Alamos National Laboratory

Start Date: 1998

Characterization and monitoring of groundwater conditions in complex volcanic geology in the vicinity of Los Alamos National Laboratory. Multiple installations in various phases of work. Wells continue in operation.

City of Perryton, TX

Clients: CH2M Hill and WDC Exploration & Wells for U.S. EPA

Start Date: 1999

Characterization and monitoring of groundwater conditions in alluvial sediments. The wells continue in operation.

Camp Stanley Storage Activity, San Antonio, TX

Clients: Parsons Engineering Science and Camp Stanley Storage Activity

Start Date: 2003

Characterization and monitoring of groundwater conditions in fractured limestones. Wells installed in multiple phases and continue in operation.

Barton Springs/Edwards Aquifer Conservation District, Austin, TX

Clients: Barton Springs/Edwards Aquifer Conservation District

Start Date: 2007

Characterization and monitoring of groundwater conditions in fractured limestones.

U.S. EPA Region 8

Trona Mine, WY

Client: FMC Wyoming Corporation, Green River, WY

Start Date: 1983

Investigation and monitoring of groundwater conditions in the area of trona mill tailings and evaporation ponds. Geology consists of tertiary sediments (sandstones, siltstones, shales, oil shales) overlain by alluvium. 25 Westbay System wells installed in 1983. Additional wells installed in later phases. The wells continue in operation.

Petroleum Refinery, Cody, WY

Clients: GeoWest, Dames & Moore and Flying J, Inc.

Start Date: 1986

Assessment and monitoring of groundwater conditions in the area of a former hazardous waste management facility to obtain a RCRA closure permit. Geology consists of cretaceous sedimentary rocks overlain by gravelly alluvium.

U.S EPA Region 9

Orange County Water District, Orange County, CA

Client: Orange County Water District

Start Date: 1988

Installation and operation of Westbay System monitoring wells throughout the sedimentary groundwater basin managed by the Orange County Water District. Applications include monitoring of effects of artificial recharge of groundwater, distribution of groundwater quality, investigation of specific groundwater quality problems, monitoring of effectiveness of seawater intrusion barriers, etc. Water District staff have installed ~58 Westbay System monitoring wells, several reaching depths of 2,000 ft. The wells continue in operation.

Marine Corps Air Station El Toro, Orange County, CA

Clients: Orange County Water District, CH2M Hill for U.S. Navy and Bechtel for U.S. Navy Start Date: 1988

Remedial investigation and monitoring of water quality conditions in Irvine, CA in the vicinity of MCAS EL Toro. The work was begun by the Orange County Water District, with additional wells installed for CH2M Hill under a Navy CLEAN contract.

San Gabriel Basin RI/FS, Los Angeles County, CA

Client: CH2M Hill for U.S. EPA

Start Date: 1989

Westbay equipment was first used in the San Gabriel Basin in a full-scale field study to compare the Westbay System to standpipe wells for groundwater monitoring in alluvial basins. The study, which involved installing one 700 ft Westbay System well adjacent to a cluster of five standpipe wells, showed the Westbay System to provide comparable data to standpipes while yielding significant savings in cost and time. Many additional Westbay wells have been installed in the basin for the EPA in the period since 1989 and continue in operation. Multilevel monitoring was found to be key to understanding the heterogeneity of the groundwater basin.

Jet Propulsion Laboratory, Pasadena, CA

Clients: Insight Environmental, Battelle, Tetra Tech FW and JPL

Start Date: 1990

Investigation and monitoring of groundwater conditions in alluvial deposits in the vicinity of NASA's Jet Propulsion Laboratory. Multiple installations in various phases of work. The wells continue in operation.

Central & West Basin Water Replenishment District, Los Angeles County, CA

Client: Bookman Edmonston Engineers

Start Date: 1992

Investigation and monitoring of groundwater conditions in alluvial deposits downstream of the San Gabriel Basin and upstream of a major groundwater supply for suburban Los Angeles. The wells continue to be operated by CH2M Hill as part of the U.S. EPA's monitoring network for the San Gabriel Basin.

San Gabriel Basin RI/FS, Los Angeles County, CA

Clients: San Gabriel Basin Water Quality Authority, CDM, Geosystems Analysis, PES and MACTEC Start Date: 1995

Westbay System monitoring wells have been installed on behalf of PRPs in a number of operable units in the San Gabriel Basin. The wells range in depth to 1,500 ft. The wells continue in operation.

U.S. Department of Energy LEHR Facility, Davis, CA

Client: Pacific Northwest National Laboratory

Start Date: 1995

Groundwater characterization and monitoring at a DOE facility in Northern California.

Water Reclamation Project, Los Angeles, CA

Client: Los Angeles Department of Water & Power

Start Date: 1997

Characterization and monitoring of groundwater conditions at an artificial recharge facility to study the effects of recharging reclaimed water.
March Air Force Base, Riverside, CA

Client: Tetra Tech, Inc.

Start Date: 1998

Installation of multilevel monitoring wells in alluvial sediments as part of a program of careful characterization, monitoring and modelling of groundwater conditions in the vicinity of March Air Force Base as an alternative to active remediation.

Former Fort Ord, CA

Client: MACTEC E&C

Start Date: 2001

Characterization and monitoring of groundwater conditions in multiple aquifers in alluvial sediments at a former Army facility. Wells have been installed in multiple phases and continue in operation.

Whittaker Bermite Project, Santa Clarita, CA

Clients: CH2M Hill and Lang Exploratory Drilling for U.S. Army Corps of Engineers

Start Date: 2002

Characterization and monitoring of groundwater conditions in alluvial sediments. The wells continue in operation.

Boeing Rocketdyne Facility, Santa Susannah, CA

Clients: MWH Americas, Inc.

Start Date: 2004

Characterization and monitoring of groundwater conditions in fractured sedimentary rock. Wells installed in multiple phases and continue in operation.

Marine Corps Logistics Base, Barstow, CA

Clients: OTIE, Tetra Tech FW and Lang Exploratory Drilling

Start Date: 2002

Characterization and monitoring of groundwater conditions in alluvial sediments. The wells continue in operation.

Mojave Water Agency, Apple Valley, CA

Clients: Mojave Water Agency

Start Date: 2003

Characterization and monitoring of groundwater conditions in alluvial sediments for resource management. Westbay wells installed in multiple phases through to 2009 and continue in operation.

Las Vegas Valley Water District, Las Vegas, NV

Client: Las Vegas Valley Water District

Start Date: 1994

Groundwater characterization and monitoring near an ASR well in an alluvial basin for water resources management. The well continues in operation.

Yucca Mountain, NV

Client: Nye County Nuclear Waste Repository Project Office

Start Date: 1995

Characterization and monitoring of pore pressure responses in the unsaturated zone in a sequence of welded and non-welded tuffs at the site of a proposed nuclear waste repository at Yucca Mountain, Nevada. Later phases of work have included multiple installations for saturated zone monitoring downstream of Yucca Mountain. The wells continue in operation.

Semiconductor Plant, Phoenix, AZ

Clients: Clear Creek Associates and Dames & Moore Consultants for Motorola

Start Date: 1984

Remedial investigation and monitoring of an NPL site. Geology consists of alluvium overlying fractured granite, breccia, arkosic sandstones & conglomerates. Westbay System wells have been installed in various phases since 1984. The wells continue in operation.

General Electric Facility, Chandler, AZ

Client: Dames & Moore Consultants

Start Date: 1991

Characterization of groundwater conditions in alluvial deposits at an industrial facility.

Manufacturing Facility, Phoenix, AZ

Clients: LFR Levine Fricke and F & B Manufacturing Co.

Start Date: 1992

Investigation and characterization of groundwater conditions in alluvial deposits in the vicinity of an industrial facility. The wells continue in operation.

Manufacturing Facility, Phoenix, AZ

Client: Dolphin, Inc.

Start Date: 1993

Investigation and characterization of groundwater conditions in alluvial deposits in the vicinity of an industrial facility. The wells continue in operation.

Naval Air Station Agana, Guam

Client: Ogden Environmental, San Diego, CA

Start Date: 1994

Groundwater characterization and monitoring in a karstic limestone environment at NAS Agana.

U.S. EPA Region 10

U.S. Department of Energy Idaho National Laboratory, Idaho Falls, ID

Client: U.S. Geological Survey, Battelle Energy Alliance and CH2M-WG Idaho

Start Date: 2005

Characterization & monitoring of groundwater in fractured rock environment. Well installed in multiple phases through to present and continue in operation.

U.S. Department of Energy Hanford Site, Richland, WA

Client: Pacific Northwest National Laboratory

Start Date: 1988

Evaluation of Westbay System monitoring wells as compared to conventional well clusters for characterization and monitoring of groundwater conditions at the Hanford Reservation. Concluded that the Westbay System can yield representative data while eliminating the need for repeated purging of the monitoring zones and providing significant cost savings due to reduced drilling.

The Westbay System wells were also used for automated monitoring of multiple zones during pumping tests to evaluate advanced methods for testing the permeability of highly-transmissive alluvial deposits without withdrawing water.

Industrial Facility, Albany, OR

Client: CES Consultants, Portland, OR

Start Date: 1996

Groundwater characterization and monitoring in unconsolidated alluvial sediments at an industrial facility.

Boeing Aircraft Plant, Auburn, WA

Client: Dames & Moore Consultants, Seattle, WA

Start Date: 1984

Investigation of groundwater conditions in silts and sands underlying an operating industrial facility in order to establish compliance with RCRA regulations.

Western Processing Site, Kent, WA

Client: CH2M Hill for U.S. EPA

Start Date: 1984

EPA-funded small-scale trial of the Westbay System for monitoring at an NPL hazardous waste site. The site has since entered remediation and the monitoring well has been destroyed.

Attachment B: Westbay System Brochure This page intentionally left blank

Multilevel Technology for Subsurface Characterization and Monitoring

Is Groundwater Monitoring Important?

Environmental monitoring for unconventional oil and gas

4D subsurface characterization using Westbay technology

Characterization of contamination plume using Westbay System

WHY GROUNDWATER MONITORING?

Groundwater is an essential resource of great social, environmental and economic importance. With continuous population growth and industrial expansion impacting the state of groundwater around the world, implementing comprehensive groundwater management strategies is critical.

As an essential component of water management, groundwater monitoring networks are designed to optimize the collection of vast amounts of field data during the life of a project. Collection, analysis, and management of water levels and water quality parameters provide fundamental baseline information necessary for identifying potential risks and managing groundwater as a sustainable resource.

Groundwater monitoring networks:

- provide baseline data to map the spatial and temporal distribution of water quality
- identify short-term changes to groundwater flow from pumping, natural recharge and discharge, agricultural and industry use
- isolate impacts to groundwater from contaminant spills and releases
- present early warning of potential risks and the need for mitigation measures
- offer real-time accounting of water use and compliance with regulatory guidelines

OUR SOLUTION

Since 1978, the Westbay* System has provided its clients with a cost-effective, multilevel monitoring technology designed for long-term groundwater monitoring and data acquisition. The Westbay System is designed for collecting subsurface data at any number of discrete positions within a single well. Under even the most complex hydrogeologic conditions, this completely customizable system is a costeffective, reliable solution that surpasses traditional monitoring methods.

Westbay System

Flexible, industry-tested design offers *Superior Performance*

OVERVIEW

The Westbay System is a completely versatile, multilevel monitoring technology that allows testing of hydraulic conductivity, monitoring of fluid pressure and collection of fluid samples from multiple zones within a single borehole. Designed for reliability and defensibility, the Westbay System can accommodate a wide variety of borehole conditions including diameter, depth, temperature and chemistry considerations.

Westbay System advantages:

- obtain measurements and samples at any number of discrete locations along a single borehole
- collect samples without purging
- designed for long-term monitoring
- engineered to operate at great depths
- reduced drilling and installation costs, with minimal site disturbance
- removable probes allow for convenient calibration and servicing
- built-in defensible QA/QC procedures

WELL COMPLETIONS

Westbay Systems are engineered with a unique, customizable casing system. The casing system is available in two sizes (MP38 and MP55) and manufactured from plastic or stainless steel to fit various borehole dimensions and operational requirements. Hydraulically-inflated packers and/or backfill provide engineered seals between monitoring zones, preventing unnatural flow and crosscontamination. Valved ports in the zones provide access for monitoring, sampling and hydraulic testing.

1 PACKERS

- Engineered seal in a range of borehole sizes
- No dedicated inflation lines
- Controlled hydraulic inflation with record of pressure and volume
- Quality control tests to confirm performance at any time after installation

Westbay Systems can be installed in a number of different ways to suit geologic conditions, drilling methods, and project objectives.

Completion methods include:

- packers in open borehole
- packers through temporary casing
- packers in a cased well
- packers in cemented and perforated well
- direct backfill

WESTBAY SYSTEM PROBES

A variety of probes are available for use with the Westbay System. Reliable, accurate, and portable wireline-operated probes can be lowered into the casing system and used to:

- measure groundwater pressure
- test hydraulic parameters
- collect samples in-situ
- perform system specific tests

COLLECTING GROUNDWATER SAMPLES

Westbay Systems offer the unique ability to collect discrete fluid samples at formation pressure. For sample collection the probe and sample container are lowered to the desired depth, where the sample is collected into the container. The probe and container are then retrieved to the surface for further analysis.

Westbay System sampling allows you to:

- collect samples with minimal disturbance and without repeated purging
- maintain samples at formation pressure
- monitor pressure during sampling
- document quality assurance

MEASUREMENT PORT

 For fluid pressure measurements, fluid sampling and low-k testing

PUMPING PORT

3

 For purging, hydraulic conductivity testing, and quality control testing.

Accurate, reliable long-term monitoring delivers Definitive Results

MEASURING GROUNDWATER PRESSURE

Westbay pressure probes can be used to take periodic, manual measurements of in-situ fluid pressures or to automatically monitor pressures using telemetry.

With a single probe, pressures are measured one port at a time. The output from the probes is digitized and transmitted through a rugged but lightweight wireline to a control unit at the surface. By attaching a standard laptop to the interface, data can easily be downloaded and stored for interpretation and analysis.

For automated multilevel measurements of fluid pressures, a string of pressure probes can be distributed down the well with each probe located at a selected measurement port. Each probe has a unique identity, allowing them to be polled individually or simultaneously by the datalogger.

Westbay Systems allow you to:

- measure pressure at multiple locations in a single well
- measure manually or automatically
- redeploy probes in alternate locations
- select from a variety of logging modes
- perform in-situ calibration checks
- document quality assurance

TESTING HYDRAULIC PARAMETERS

Westbay technology provides many effective methods for evaluating and testing the hydraulic characteristics of a site.

Discrete monitoring ports offer the unique ability to observe and record details within a single well.

Westbay Systems allow you to:

- observe detailed distributions of groundwater pressures
- observe the effects of pumping tests or changes in barometric pressures
- gain insight into permability variations
- generate a stress in a monitoring zone and observe responses of neighbouring zones and wells

A number of qualitative and quantitative tests can be performed to determine the hydraulic parameters of formation materials or to verify the operation of the system.

- single-zone tests
- slug tests
- pulse-interference tests
- constant-head tests
- vertical interference tests
- cross hole tests
- tracer tests

As part of a complete environmental monitoring project, Westbay Systems are engineered to meet the rigorous demands of a wide range of operations. Westbay Systems provide the highest level data quality necessary to support critical decisions.

- 4 CENTRAL ACCESS CASING
- Made of plastic (PVC) or stainless steel
- Two sizes: 38 mm [1.5 in], 55 mm [2.2 in]
- Operational capability to depths of 1,200m
 [4,000 ft]

5 SEALED CONNECTIONS

All casing connections sealed by o-rings

6 SAMPLER PROBE

- Independently controlled sampling valve
- Silicon strain-guage pressure transducer
- Location/activation mechanism compatible with Westbay System

SAMPLE CONTAINER

- Maintains sample pressure during recovery
- Easy to clean

Applications

Groundwater Resource Management	 Groundwater basin management Manage aquifer recharge operations Seawater intrusion Detailed long-term monitoring
Contaminant Site Investigations	 Site characterization Plume delineation Remediation design and performance monitoring
Geologic Repositories	 Site characterization Determine feasibility of underground disposal site
Geotechnical Projects	 Monitoring of pore pressure, slope stability for tunnels, subsidence and drainage Groundwater pressure monitoring at large dams
Mining	 Pre-feasibility planning and support Subsurface characterization and monitoring Acid rock drainage assessment and control Monitoring of leach operations Environmental impact assessment and site closure Sub-permafrost groundwater monitoring
Unconventional Oil and Gas	 Site characterization to reduce risk and minimize regulatory pushback Evaluation of water management alternatives Optimum placement, design and construction of injection wells Compliance monitoring and minimization of cross-contamination Closure design and performance monitoring

Features and Benefits

Features	 Unlimited number of monitoring zones in a single well Additional data at small incremental cost Sealed monitoring zones Collect water samples without repeated purging Automated pressure monitoring at multiple depths 	 Wide suite of hydraulic test methods Removable and upgradeable probes Improved security Excellent field quality control procedures Custom components available to meet operational requirements 		
Benefits	 Improve understanding of hydrogeological conditions and contaminant transport Minimize drilling cost and time Reduce site disturbances 	 Minimize wellbore storage effects Minimize cross-contamination Increase confidence in data Reduce health, safety and environmental risks 		

© Westbay Instruments *Mark of Nova Metrix Ground Monitoring (Canada) Ltd. WB-15-09-25 Printed in Canada.

Attachment C: Westbay System Technical Paper This page intentionally left blank

Multi-Level Groundwater Monitoring with the MP System[,]

Abstract

Defining the extent of a groundwater contaminant plume in geologic materials requires a three-dimensional array of sampling points. Such an array is commonly installed by placing a single access tube and inlet screen in each of a series of boreholes. With this method, the number of sampling points at a given site is generally limited by the high cost of drilling. An alternative is to install monitoring points at many levels in each borehole. Multi-level monitoring can provide increased data density and therefore an improved understanding of site conditions. This paper describes how the MP System, one type of multi-level monitoring well, is installed and operated. Field quality control procedures, 1) to verify the integrity of the access tube, inlet valves, and borehole seals, and 2) to confirm the operation of measuring and sampling equipment, are also discussed.

Introduction

When groundwater contaminant plumes are suspected of having significant depth as well as lateral distribution, a three-dimensional array of monitoring points is needed to identify and characterize such plumes. Thus, groundwater data must be obtained from a number of different locations and from a number of different depths at each location. As a result, either a large number of boreholes are required, each with a separate instrument installed, or instruments must be combined and installed at multiple levels in each of a smaller number of boreholes.

Multi-level groundwater monitoring devices have been described by many writers, some discussing the technical benefits and others the advantages to schedules and costs which can result when multi-level monitoring devices are used to reduce the number of boreholes required. Most important, however, are the advantages that accrue from the increased data density and from the field verification procedures that are available. The very fact that one is capable of accessing several different discrete zones in one monitoring well provides a testing and verification capability that is simply not possible in a single-level device such as a standpipe monitor well.

The basic requirements of any groundwater monitoring system are that it provide the user with the

ability to measure fluid pressure, purge the monitoring zone, collect fluid samples, and undertake standard hydrogeologic tests, such as permeability tests and tracer tests. In addition, quality assurance plans for groundwater monitoring programs have led to a requirement for periodic testing and calibration of all aspects of groundwater monitoring devices.

Quality assurance plans normally require field verification tests immediately following installation and again at periodic intervals during the operating lifetime of the installation. In fact, few groundwater monitoring devices are designed to allow extensive field verification tests to be carried out. However, some types of multilevel monitoring instruments, such as the MP Systemdeveloped by Westbay Instruments Inc., were designed with field verification tests in mind (Patton and Smith, 1986). With such systems, questions of data quality can be readily addressed.

General Description of the MP System

The MPSystem is a modular multi-level groundwater monitoring device employing a single, closed access tube with valved ports. The valved ports are used to provide access to several different levels of a borehole through a single well casing. The modular design permits as many monitoring zones as desired to be established in a borehole. Furthermore, at the time of installation, zones may be added or modified without affecting other zones or significantly complicating the installation. As a result, the number and location of monitoring zones can be decided based on the information obtained during drilling. Only a broad scope of requirements need be defined in advance of drilling.

The MP System consists of casing components, which are permanently installed in the borehole, portable pressure measurement and sampling probes, and specialized tools. The casing components include casing sections of various lengths, regular couplings, two types of valved port couplings with different capabilities, and packers, which seal the annulus between the monitoring zones. The MP System has been used in many different geologic and climatic environments in boreholes ranging from a few feet to over 4,000 ft (1,200 m) in length. The 1.5-inch (38 mm) I.D. MP38 System has been used in the field since 1978, while the 2.25-inch (55 mm) I.D. MP55 System was developed in 1990-91.

Casing Components

The casing components of the MP System are made in either plastic or stainless steel. While the illustrations are of plastic components, the descriptions of operating principles that follow apply to both types of materials. Most of the components referred to are shown in Figures 1 and 2.

Casing

MP casing is supplied in a number of different lengths to provide flexibility in establishing the position of monitoring zones and associated seals in the borehole. Common nominal casing lengths are 2 ft (0.5 m), 5 ft (1.5 m) and 10 ft (3.0 m). Actual casing lengths are less than the nominal lengths to account for the lengths of the couplings. The casing ends are machined to mate with MP System couplings.

Telescoping casing sections are used to protect the casing string from damage when ground movements are anticipated or where measurements of vertical displacements are desired.

Regular Couplings and End Caps

MP regular couplings are used to connect casing lengths where valved couplings are not required. The couplings incorporate O-rings for a positive hydraulic seal. A flexible shear rod provides a tensile connection. No adhesives are used when joining casings and couplings. MP38 regular couplings incorporate an internal, helical shoulder for the accurate location of probes and tools in the well. MP55 regular couplings do not incorporate a helical shoulder.

End caps are placed on the bottom of a casing string. They also incorporate an O-ring seal so that the entire casing string is hydraulically sealed during installation. End caps are frequently used to seal the top of the casing between monitoring periods.

Valved Couplings

There are two types of valved couplings, measurement port couplings and pumping port couplings. Measurement port couplings (or measurement ports) are used where pressure measurements and fluid samples are required. In addition to the features of a regular coupling (including the helical shoulder in the case of MP55), measurement ports incorporate a valve in the wall of the coupling, a leaf spring which normally holds the valve closed, and a cover plate or screen which holds the spring in place. When the valve is opened, an access port is provided for the groundwater to enter the coupling.

Pumping port couplings (or pumping ports) are used where the injection or withdrawal of larger volumes of fluid is desired than would be reasonable through the relatively small measurement port valve (such as for purging or hydraulic conductivity testing). Pumping ports incorporate a sleeve valve, sealed by O-rings, which can be moved to expose or cover slots that allow groundwater to pass through the wall of the coupling. A screen is normally fastened around the coupling outside the slots.

Annulus Seals

When there are many monitoring zones in a single borehole, multiple seals are required to prevent fluid migration from one zone to another along the annular opening between the borehole wall and the casing. Placement of these seals can be difficult with any groundwater monitoring device. However, considerable success has been achieved with three types of well completion used with the MP System, provided each is combined with appropriate drilling and placement methods.

With the MP System, seals can be obtained by: a) backfilling with alternating layers of sand and bentonite or grout, b) using hydraulic (water) inflated packers or c) using packers inside a cased well with multiple screens. Figure 1 illustrates a borehole containing the MP System with packers. Figure 2 illustrates a single measurement zone where the MP System is completed by each of the three common methods. Each sealing method is possible in most environments, but in many situations one method will stand out as the most advantageous.

Figure 1. MP System installation with monitoring zones isolated by packers.

Figure 2. Common completion methods for the MP System.

Direct backfilling (Figure 2a) is recommended for: 1) large diameter boreholes, 2) shallow boreholes, 3) boreholes where little or no fluid circulation is anticipated in the hole during installation (i.e., when nearhydrostatic fluid pressures or low hydraulic conductivity is present over the length of the borehole), and d) where packer gland materials are incompatible with the chemistry of the fluids present.

When direct backfilling is considered and fluid sampling is required, a very clean drilling method must be employed. While the MP System does permit purging of monitoring zones, the small size of the casing (particularly MP38) prevents sufficient energy being generated to develop the monitoring zone.

Backfill seals may include bentonite and / or grout slurries, bentonite chips or pellets or other materials with a relatively low hydraulic conductivity in comparison to that of the natural formations present.

MP casing packers incorporate an expandable gland mounted over a standard length of MP casing. The casing incorporates a one-way valve that allows fluid to travel through the wall of the casing into the packer and prevents this fluid from flowing back out of the packer. Gland lengths are typically $3 \text{ ft} (\sim 1 \text{ m})$.

Packers in an open borehole (Figure 2b) are typically recommended for: 1) small diameter boreholes (those too small for good quality backfilling to be achieved), 2) deep boreholes, and 3) sealing against significant flows (e.g., flowing artesian conditions) in the borehole. When packers are used, field labour is reduced since packer inflation is generally much faster than backfilling. When using packers, additional measurement ports are installed between monitoring zones. Such additional ports provide additional fluid pressure data for quality assurance (QA) purposes.

Packers in a cased well (Figure 2c) is a completion method that has proven very successful, particularly for environments where available hole sizes are too large for packers and / or where drilling additives, such as mud, must be used. This completion method involves drilling a large diameter hole, typically 12-inch (300 mm) and installing a 4-inch (100 mm) (for MP38) nominal diameter well casing with multiple screens. The well screens are located at all of the desired monitoring levels, based on information gathered during and following drilling. Layers of backfill are placed to provide filters around the well screens and annular seals between. Each monitoring zone is then developed through the well casing. Following development, MP casing, ports and packers are installed inside the well casing. The MP packers are inflated against the inside of the well casing, providing interior annular seals between the monitoring zones. This completion method provides the ability to properly developmud from deep mud-rotary boreholes, as well as to service the MP System during the operating life of the monitoring well.

Whenever casing packers are used, whether in open boreholes or cased wells, additional measurement ports are installed between monitoring zones for QA purposes. Measurements and tests carried out through these additional "QA ports" enable an evaluation of the effectiveness of each annulus seal. In open hole installations, such additional ports also provide added information on piezometric pressures in the portions of the borehole between primary monitoring zones.

Screens and Filters

Where both pumping ports and measurement ports are being used and the ports are likely to be surrounded by sand fill or collapsed geologic material, a single well screen is generally placed over both the measurement port coupling and pumping port coupling in each monitoring zone as shown in Figure 2a. The screen helps ensure that the zone influenced by pumping through a pumping port coupling will extend to and include the region surrounding the adjacent measurement port coupling. Screen slot size and length should be chosen with a knowledge of local site conditions. If only fluid pressure measurements are required, a simpler fabric filter tube can be placed over the measurement port coupling and clamped at either end. This filter will help maintain the length of the monitoring zone and protect the measurement port valve from fine particles. The filter material should be compatible with the chemistry of fluids present.

Installation Procedures

Selection of Casing Components

The valved couplings (measurement port couplings and pumping port couplings) allow many monitoring zones to be established in a single borehole. Horizons of hydrogeological interest are targeted on the basis of the best borehole geologic and geophysical logs available. An installation log is prepared showing the locations of the casing components. If only fluid pressures are needed, only a measurement port coupling is required in each monitoring zone. If sampling, fluid withdrawal or fluid injection is anticipated, both a pumping port coupling and a measurement port coupling are recommended in each monitoring zone. This is the case illustrated in Figures 1 and 2.

The casing lengths are chosen based on the desired locations of the monitoring zones and sealing elements. This requires an interpretation of the hydrogeologic conditions anticipated in each borehole. Caliper logs and borehole video can be useful in selecting packer locations.

If consolidation or heave is expected along the borehole axis, telescoping casing sections may be used to minimize the opportunity for compressional or tensile forces to damage the casing.

MP Casing Installation

The downhole MP System components - casing, couplings and packers - are laid out at the site of the proposed monitoring well in accordance with the casing installation log. At that time, any last minute adjustments required to make the positions of the monitoring zones and seals match hydrogeologic details of the borehole are completed and the appropriate revisions made to the installation log.

Next, the required coupling is attached to the top of each length of casing. The casing layout is checked again for compliance with the installation log. Serial numbers of measurement ports, pumping ports and packers are recorded, indicating their position on the installation log. The length of all casing sections is measured and recorded on the log.

The casing string is then assembled by lowering the casing segments into the borehole and attaching each successive segment to the adjacent coupling one at a time. As each successive MP casing section is attached to the string in the well, the section number is checked and recorded on the installation log. The coupling joint is then subjected to an internal hydraulic pressure to verify its hydraulic integrity and the test result is recorded on the log. At intervals during placement of the MP System casing clean water is added to the inside of the MP casing to reduce its buoyancy.

In collapsing soil and poor quality rock, MP casing with packers and screens may be installed through flushjointed guide tube such as drill rods or casing. Table 1 provides ranges of borehole, casing and guide tube sizes for the MP38 and MP55 Systems. Figure 3 illustrates the major stages of installing through a guide tube: A) Following completion of drilling, the guide tube is positioned in the hole. All parts of the guide tube, including any shoe attached to the bottom, must be flush on the interior and of sufficient inside diameter to permit the MP components to pass through; B) The MP components are assembled and lowered into the guide

	I.D.		Max. Depth		Borehole/Casing Size		Min. Guide Tube Size	
System	in.	mm	ft	m	in.	mm	in.	mm
Plastic MP38	1.5	38	1,500	450	3-4 1/2	75-115	3	75
Steel MP38	1.5	38	5,000	1,500	4-4 1/2	100-115	4	100
Plastic MP55	2.25	55	4,000	1,200	4 3/4-6 1/4	121-159	4 3/4	121
Steel MP55	2.25	55	6,600	2,000	4 3/4-6 1/4	121-159	4 3/4	121

Table 1. Important dimensions for the MP System.

tube in such a fashion that the packers and ports will be correctly positioned in the hole when the bottom of the MP is resting on the bottom of the borehole; C) The guide tube is pulled back to expose a packer and that packer is inflated. The pulling / inflating sequence is repeated until all of the packers have been inflated. More than one packer may be exposed during each pull of the guide tube, depending upon the stability of the borehole walls.

Casing without packers can be placed in various sizes of boreholes, with or without protective casing, as long as the borehole diameter (and casing) is compatible with the backfilling method. Good backfilling techniques involve the use of one or more tremie pipes.

Once the MP casing has been placed in the borehole, the packers are inflated (see Figure 3) or backfill is placed. If the MP casing was lowered inside a guide tube, the guide tube may be withdrawn all at once or in steps as the packer inflation or backfilling operation proceeds. An incremental casing withdrawal can reduce the opportunity for the borehole wall to loosen and cave prior to the placement of seals.

Packer Inflation

Figure 4a shows the appearance of a casing packer when it has been placed in a borehole before inflation. Figure 4b shows how the MPSystem casing packers are individually inflated using a packer inflation tool. This tool is lowered down the inside of the MP casing and is located in the correct position by the location arm seating in a coupling adjacent to the packer.

Two small packers (tool packers) are inflated, isolating the short segment of the casing containing the valve for the casing packer. At a pre-set pressure, the tool injection valve opens and water is injected into the casing packer. During inflation the vent-head mechanism on the tool holds open the measurement port beneath the packer. This vents the pressure in the zone below the packer, allowing the packer to square-off without generating unnatural squeeze pressures. Figure 4c shows the inflated MP packer after the inflation tool has been removed. At increments of volume during the inflation process, pumping is stopped and the fluid pressure of the inflation system is measured and recorded. The pressure / volume data is plotted and kept for quality assurance purposes.

Packer inflation proceeds from the bottom of the hole to the top. There are no permanent inflation lines leading to each packer. As a result, there is no limit to the number of packers that can be placed in a borehole apart from the finite limitations of packer length and borehole length.

Purging Monitoring Zones

The strategy for purging the monitoring zones may vary depending on site conditions. Figure 5 shows a typical sequence of events in drilling and completing a monitoring well. Figure 5 a shows a typical borehole environment where the invasion of drilling fluids and / or the unnatural circulation of formation fluids has caused groundwater adjacent to the borehole to be nonrepresentative of the formation fluid. Once the casing and annular seals (packer seals are shown in Figure 5b) have been installed, it is usually desirable to remove the nonrepresentative fluid. This removal, or purging, can be done in one of two basic ways: 1) Purging by natural groundwater flow, or 2) Pumping to purge monitoring zones.

Figure 3. Installation of MP casing through a guide tube.

Figure 4. Steps in the inflation of an MP System packer.

Figure 5. Typical sequence of events in purging monitoring zones.

Purging by natural groundwater flow is attractive, particularly in environments where groundwater flow is understood to be relatively rapid. In such an environment, unnatural fluids introduced during drilling may no longer be adjacent to the borehole by the time the monitoring system has been installed. In such a case, there may be little to be gained from the investment of time and resources to pumping an arbitrary volume of water from each monitoring zone. Rather, fluid samples might be collected over a period of time and analytical results compared in order to evaluate the stabilization of conditions in the monitoring zone.

When purging by natural flow is not acceptable, monitoring zones can be purged by pumping. Zones may be pumped individually or several at a time (as shown in Figure 5c). Individual hydrogeologists and hydrochemists may prefer different purging techniques depending upon local conditions. However, the purging procedures are essentially the same as would be used for a single standpipe piezometer. One procedure which has been successfully used is described below.

1) An acceptable and convenient tracer is added to the drill fluid during drilling.

- 2) After the casing has been installed and the packers have been inflated, the pumping ports in all or a portion of the monitoring zones are opened with the use of an open/close tool.
- 3) Fluid from the inside of the MP casing is pumped out of the well. The volume of fluid removed and the pumping time will depend on many factors including: the drilling method, the length of time the hole was left open prior to completion, the hydrogeological conditions in the borehole, and the accuracy required. The use of a tracer can be helpful in determining when the pumping is completed.
- 4) Once pumping has been completed, all the pumping ports except one are closed with the use of the open / close tool. With one pumping port open, the MP casing is hydraulically identical to a standpipe piezometer. A quantity of fluid may be pumped from inside the MP casing to complete the development of this monitoring zone. Hydrogeologic testing of this zone and its adjacent casing seals can be done at this time. For example, slug tests can be undertaken to obtain transmissivity and storativity values. This

Figure 6. Operation of an MP pumping port.

pumping port can then be closed, the next one opened and the process repeated.

Following purging, the MP System is ready for sampling and for pressure measurements as indicated in Figure 5d.

Operation of the Pumping Ports

To operate the pumping port valve, an open/close tool is used as illustrated in Figure 6. This tool has springloaded "jaws" which can be mechanically activated from the surface. The pumping port is shown closed in Figure 6a. To open the valve, the tool is lowered on a wireline with the jaws extended and pointing upward (i.e., so that they will catch on shoulders when the tool is raised). In this condition, the jaws will spring through the couplings as the tool is lowered to just below the desired pumping port coupling. The tool is then pulled up so that the jaws engage the bottom shoulder of the sliding valve. By continuing to pull up on the wireline, the valve can be opened, as in Figure 6b. Once the valve is opened, the jaws can be collapsed into the housing and the tool recovered. With this one valve opened, fluids can be added to or removed from the monitoring interval by

injecting or pumping from the MP casing. Other zones may still be monitored in the normal manner using a pressure probe or sampling probe as they will not be hydraulically connected to the interior of the casing.

To close the pumping port coupling, the open / close tool is brought to the surface and the housing is reversed so that the jaws point downward (i.e., the tool will stop on exposed shoulders when the tool is lowered). The tool is lowered to the open pumping port with the jaws collapsed into the housing. Once the tool is located near the pumping port, the jaws are released and the valve is closed by tapping on the top shoulder of the sliding valve with the tool.

Figure 7. Operation of a pressure probe.

Testing and Monitoring

Fluid Pressure Measurements

Fluid pressure measurements can be made at each location in a borehole where an MP measurement port coupling has been installed. The measurement coupling includes a helical landing ring and a leaf spring valve which is normally closed. The fluid pressure is measured using a MOSDAX[®] pressure probe which incorporates a location arm, a backing shoe, a face seal, and a fluid pressure transducer. These features are shown on Figure 7. The probe is operated on a cable connected to an interface and portable computer at the top of the monitoring well. Using MProfileTM software, the computer displays the pressure both graphically and digitally, along with transducer temperature, well information and probe status (see Figure 8).

The following procedure is used to make fluid pressure measurements. The probe is lowered to a point below the first measurement port to be accessed (usually the deepest). The location arm is released from within the probe body. The probe is raised to just above the measurement port coupling and then lowered until the location arm rests on the helical landing ring in the coupling. The weight of the probe causes it to rotate into position at the correct depth and orientation to operate the valve (Fig. 7a). At this point the pressure transducer is measuring the fluid pressure inside the MP casing at that depth. This reading will be displayed on the surface computer and is recorded. If convenient, the depth to water inside the MP casing is also measured and recorded at this time as a check on the pressure transducer.

The backing shoe is then activated. It pushes the probe to the wall of the coupling so that the face seal on the probe seals around the measurement port valve at the same time as the face of the probe pushes the valve open. The transducer is now hydraulically connected to the fluid outside the coupling and isolated from the fluid inside the casing (Fig. 7b). The reading displayed on the surface computer will be the fluid pressure in the formation outside the measurement port. The pressure outside the port can be observed as long as desired and recorded as often as desired. After the reading has been recorded, the probe backing shoe is deactivated (retracted) and the valve in the coupling reseals. The probe will again be

Figure 8. Data display on surface computer when using MProfile software to operate a MOSDAX pressure probe.

measuring the fluid pressure inside the MP casing (Fig. 7a). The pressure in the casing is again recorded, for quality assurance purposes.

Measuring Pressure in Low Permeability Environments

Very low permeability environments present a special challenge for measuring fluid pressures. When the routine profiling procedures described above are followed, a stable pressure may be observed through the measurement port. However, the act of opening the port may have been sufficient to change the pressure in the monitoring zone, and if the zone is very tight, that pressure change may not dissipate quickly enough to be observed. In such an environment it is always difficult to determine the validity of a static measurement unless some form of dynamic test is carried out as well. In the case of the MPSystem, this is done through the use of a MOSDAX sampler probe. As illustrated in Figure 9a), the MOSDAX sampler incorporates all of the features of a pressure probe, plus a valved passage which is controlled via the surface computer. With the sampling valve closed

the probe acts identically to a pressure probe and thus may be used for single-probe profiling. The difference is that once the probe is located and activated (Fig. 9b), the fluid level inside the MP casing may be adjusted to a level slightly higher or lower than the piezometric level in the monitoring zone. The sampling valve is then opened (Fig. 9c), exposing the monitoring zone to the fluid pressure in the MP casing. In very low permeability environments, no water will flow during this time. The sampling valve may be kept open for a specified period of time (such as one minute). The sampling valve is then closed (Fig. 9d) and the pressure recovery in the monitoring zone is recorded vs. time (Fig. 10). Standard analytical methods can be applied to the pressure recovery data in order to determine the apparent pressure in the monitoring zone. The same procedure can be used for testinghydraulic conductivity in low-kzones.

Pressure Monitoring Methods

The two principle methods of monitoring fluid pressure with the MP System are illustrated in Figure 11. Single probe profiling (Fig. 11a) involves an operator

Figure 9. Using a sampler probe for testing hydraulic conductivity and verifying fluid pressure measurements in low permeability environments.

travelling to each well with a set of portable equipment including a pressure probe, cable and reel, interface and computer. The operator manually locates the probe at each measurement port and carries out fluid pressure measurements one at a time. MProfile stores the data on disk with each record tagged as to the location of the probe in the well, date, time, and probe status. Single probe profiling is generally adequate for monitoring fluid pressure up to a frequency of once per month.

When pressure measurements are desired more frequently than is reasonable for single-probe profiling, or when continual observation and recording of unanticipated events is required, the monitoring well can be configured for automated datalogging (Fig. 11b). Any or all of the measurement ports in a well may be selected for automated monitoring. Lengths of cable are made up to span the distance between each probe and the next. The string of probes and cable is assembled and lowered into the well. The datalogger and a computer are attached at the surface and the lowermost probe is located and activated in the appropriate measurement port. The

Figure 10. Typical data record from a test in a low permeability zone using sampler.

Figure 11. Methods of monitoring fluid pressure with the MP System.

remaining probes are located and activated sequentially from the bottom of the well to the top. Once all of the probes are activated, the computer is used to program the datalogger.

Recording of pressure measurements may be carried out on a simple time basis (e.g., one reading per hour or one per day), or the logger may be programmed to continually scan each probe and record pressures if a specific threshold value is exceeded. Each probe may be assigned an independent threshold (i.e., record data if probe 1's reading changes by 1 ft of water, probe 2 by 3 ft, etc.).

The datalogger may stand unattended, in which case an operator would periodically visit the site to download the stored data, or the datalogger may be connected to a telemetry system such as an RF modem, cell phone system, or landline. When connected to a communication device, a second threshold can be designated for each probe which will cause the logger to transmit an alarm signal to the host computer.

A unique aspect of monitoring in the MPSystem is that unusual pressure readings can often be verified by means of an in-situ calibration check. When an alarm condition is received, a natural first reaction is to question the validity of the measurement ("is it real, or is it the instrument?"). When datalogging with the MPSystem, if an alarm were received, the operator can log onto the well via remote communications, deactivate two or more probes including the one causing the alarm and compare their measurements of the fluid pressure within the MP casing. The column of fluid inside the MP casing is independent of all of the monitoring zones and thus serves as a reference pressure source. If the deactivated probes agree on the internal pressure, the alarm condition can be taken to be valid and the probes can be reactivated to resume monitoring. If the probe cauaing the alarm did not agree with the others, instrument error might be suspected. In such a case, an operator could visit the well, remove the string of probes, replace the offending probe and reinstall the string to resume monitoring. The offending probe could then be calibrated and serviced in a laboratory.

Fluid Sampling

Fluid samples are obtained by lowering a sampling probe and sample container to the desired measurement port coupling. As shown on Figure 12, the sampling probe operates in similar fashion to the pressure probe except that a groundwater sample is drawn through the measurement port coupling. Whenever the sampling probe is operated with the sampling valve closed, it is identical to a pressure probe, supplying the same data. The procedure for taking a groundwater sample is as follows. A clean, empty sample container is attached to the sampling probe. The probe and container are prepared (e.g., evacuated) in a manner suited to the specific project and the sampling valve is closed to prevent the fluid inside the MP casing from entering the sample container. The probe and container are lowered to below the selected measurement port coupling. The location arm is released and the probe is positioned in the measurement port coupling (Fig. 12a). The fluid pressure inside the MP casing is recorded.

The backing shoe is activated and pushes the probe to the wall of the coupling so that the face seal on the probe seals around the measurement port valve at the same time as the face of the probe pushes the valve open. The interior passage of the probe is now hydraulically connected to water outside the coupling (Fig. 12b), but no fluid movement takes place. During this operation the change in fluid pressure is observed at the surface and may be recorded.

The sampling valve in the probe is opened, allowing fluid from outside the measurement port to flow through the probe and enter the sample container (Fig. 12c). The fluid displayed at ground surface drops and then recovers as the fluid in the container builds to formation pressure. Once the container is full, the sampling valve is closed (Fig. 12b), the backing shoe is deactivated (retracted) (Fig. 12a) and the fluid pressure inside the MP casing is once again recorded. The sampling probe and sample container are then pulled to the surface. The sampling probe can then be cleaned, a clean container attached and the procedure repeated.

When using a non-vented sample container, the fluid sample is maintained at formation pressure while the probe and container are returned to the top of the well. Once recovered, there are a variety of methods of handling the sample:

- the sample may be depressurized and decanted into alternate containers for storage and transport,
- the sample container may be sealed and transported to a laboratory with the fluid maintained at formation pressure,
- the sample may be transferred under pressure into alternate pressure containers for storage and transport.

Figure 12. Operation of a sampler probe.

The advantages of this discrete sampling method can be summarized as follows:

- The sample is drawn directly from formation fluids outside the measurement port. Therefore, there is no need for pumping a number of well volumes prior to each sampling event. Because there is no pumping prior to sampling, the sample is obtained with minimal distortion of the natural groundwater flow regime, the storage and disposal of large volumes of hazardous purge fluids is eliminated, and operator exposure to hazardous fluids is reduced.
- 2) The lack of pumping means samples can be obtained quickly, even in relatively low permeability environments.
- 3) The sample travels a short distance into the sample container, typically from 1 to 2 ft (0.3 to 0.6 m), regardless of depth.
- 4) The risk and cost of storing and disposing of hazardous purgefluids is virtually eliminated.

Hydraulic Conductivity Testing

A variety of different test methods can be employed to measure the hydraulic conductivity of formation materials with the MP System. These include variable head, constant head and pressure-pulse tests.

Variable head tests are the single well test method most commonly used with the MP System. Using these types of tests in the MP System, hydraulic conductivities between 10^{-2} and 10^{-8} cm/sec can be measured.

For variable head tests the valved pumping port couplings are used to provide the hydraulic connection between the interior of the MP riser tube and the test zone. In cases where monitoring zones are to be purged, it is convenient to carry out hydraulic conductivity testing just prior to or following purging. The head (fluid level) inside the MP casing can be adjusted while all port valves are closed, then the selected pumping port can be opened in a controlled manner (pumping port operation is described in the discussion of purging). This allows accurate measurement of both the initial head change and the time at which the head change is applied (t_0) . The pumping port valve is opened rapidly (in less than one second), which satisfies the theoretical requirement that an instantaneous head change be applied to the tested zone.

For rising head tests the water level inside the MP casing is bailed or pumped down to a pre-determined level below the static water level in the test zone. For falling head tests the water level is raised to a level above the static water level in the zone to be tested. Measurement equipment is set in place and the pumping port valve is opened. Recovery of the water level in the MP casing is measured and recorded vs. time. A water level tape or pressure transducer is commonly used to

Pressure Pressure Pressure Port Port Port

Figure 13. Typical data record from a rising head test.

record the water level changes. Figure 13 shows a typical record of water levels during a rising head hydraulic conductivity test.

Slug tests are carried out by opening the pumping port coupling at the zone to be tested and allowing the water level in the MP casing to equilibrate to the static water level for that zone with measurement equipment in place. The initial head change is then applied by rapidly lowering a displacement slug (a length of solid rod or sealed pipe) into the water. The recovery of the water level is measured and recorded vs. time. The slug test can be repeated and recorded again when the slug is removed from the water. Figure 14 shows a typical record of water levels during a slug test of hydraulic conductivity.

Data from variable head hydraulic conductivity tests may be analysed using any preferred calculation method. The most commonly used methods are those of Hvorslev (1951), Cooper et al. (1967) and Bouwer and Rice (1976). Selection of these or any other analytical method should be based upon an assessment of how well the test conditions comply with the simplifying assumptions inherent in the analytical method.

In very low permeability environments (hydraulic conductivity less than 10⁻⁷ or 10⁻⁸ cm / sec) the formation fluid pressure can be changed with very little fluid movement. As a result, tests can be carried out through the measurement port valve rather than the pumping port valve. Using a sampler probe with a transducer the zone to be tested may be exposed to the fluid pressure inside the MP casing for a period of time (see Fig. 9 and discussion of measuring fluid pressure in low-k environments). The zone may then be shut-in and the recovery of fluid pressure over time measured and recorded. Figure 10 shows a data record from such a test.

Figure 14. Typical data record from a slug test.

Field Quality Control

There are two distinctive parts to any quality assurance program. The first involves manufacturing and testing procedures which avoid the production or installation of equipment that may result in the collection of erroneous data. The second involves field operational procedures which will ensure that erroneous data are not generated as a result of the failure of any component to function as intended. Although the first part is necessary to allow the installation of useful monitoring wells, the second must also be rigorously applied to identify sources of erroneous and misleading results.

The MP System has many unique features for field quality control which clearly separate it from other types of groundwater monitoring instrumentation. These features are the result of designing components in response to the stringent requirements of users in the fields of nuclear and hazardous waste management.

Quality control tests are carried out at various points during the field use of the MP System and tend to be grouped into three periods: during installation, following installation, and during routine monitoring.

During Installation

During installation of the MPSystem the following operations form part of the quality control procedures:

Drill core or cuttings and geophysical logs are carefully checked to see that monitoring zones and annular seals are placed at the optimum positions. In cased wells, the well casing is inspected to verify that the interior surfaces are suitable for establishing good quality packer seals and backfill is placed under carefully controlled conditions with frequent measurements of material depths.

Westbay casing components are carefully inspected to see that critical surfaces are undamaged, sealing Orings are clean and in place, and components are correctly oriented. Serial numbers are recorded along with component position in the installation. These operations link the field quality control to production test results.

As each section of MP casing is attached, the connection is pressurized with water and observed for any signs of leakage. Test results are recorded on the installation log.

During inflation of each MP packer, incremental volumes and pressures are recorded and plotted. These data allow an evaluation of borehole conditions and provide the first indication of the quality of the annular seal obtained.

Following Installation

Immediately following installation further checks are carried out to verify the operation of the system. These include the initial pressure profile which serves to confirm the operation of the inlet valves of the measurement port couplings. Observed head differences across exterior casing seals directly indicate the seal effectiveness. Where such head differences are not observed, the annular seals can be artificially stressed by opening a pumping port in one monitoring zone and withdrawing or adding a slug of water from inside the casing while using the pressure probe to observe the pressure response in the monitoring zone on the other side of the seal. In cased wells and wells in low permeability environments, stresses can be applied through measurement ports in order to evaluate seal integrity.

Additional measurement ports are routinely installed between monitoring zones, further enhancing the ability to carry out thorough quality control tests.

Fluid can be added to packers at any time following installation and the pressure at which further fluid injection occurs can be compared with the injection pressures recorded during the initial inflation.

During Routine Monitoring

A number of quality control checks are built into the routine monitoring procedures.

When measuring fluid pressures, the pressures measured inside the MP casing at each measurement port are recorded immediately before and after the measurement made through the port. These inside casing values serve a number of purposes: 1) comparison of the two values confirms that the transducer was operating the same way after the reading as before, 2) comparison of the inside values from one set of measurements to the next confirms transducer stability over the intervening time period (assuming the water level inside the casing is the same), and 3) if the head of fluid inside the MP casing is known, an in-situ calibration check of head of water versus transducer output is obtained. Any unacceptable changes which show up during monitoring can be checked and corrected through laboratory calibration of theinstrument.

Water sampling procedures with the MP System improve quality control because: 1) the short flow path between the formation and the container greatly reduces the surface area contacted by the sample, 2) the contacts between the water sample and the atmosphere are eliminated, 3) observing and recording the water level inside the MP casing during sampling confirms that the sample obtained is from outside the casing, and 4) sampling without purging reduces the disturbance of the natural system, minimizing unnatural changes in chemistry. Sampling methods can be varied to compare the effects of atmospheric contact versus no atmospheric contact and maintaining the sample under pressure versus allowing depressurization of the sample.

During water sampling, sample blanks and spikes may be collected using identical procedures for sampling, preservation, handling and shipping. Travel blanks and spikes may also be collected using identical procedures for handling, preservation and shipping. The chemical analyses of samples obtained using the MP System may be compared with those of samples collected from the same zone by alternate means.

Finally, the pumping port may be reopened should further purging appear to be desirable.

For both fluid pressure and water quality data, the MP System can provide corroborative data. That is, a high density of data can be obtained in a single installation so that significant changes in piezometric pressure and / or water quality can appear as transitions along a depth profile. Thus, neighboring values will corroborate one another rather than indicating abrupt changes which would cause one to question anomalous values.

Serviceability

In the event that quality control testing should reveal a component which is not operating properly, various steps can be taken to remedy the problem including, if certain cases, removing the MP casing string, replacing faulty components and reinstalling the string.

Table 2. Summary of major quality control aspects of the MP System.

Summary

The modular nature of the MPS vstem permits a large number of monitoring zones to be accessed through valves placed inside a single closed tube or casing installed in a single borehole. Such a monitoring system can provide a detailed view of the variation of piezometric pressure and water quality with depth. The valved couplings permit purging of the well following installation and allow all standard hydrogeologic tests to be carried out in each zone. Routine sampling is carried out without repeated purging, eliminating the need to store and dispose of large volumes of purge fluid and reducing operator exposure to hazardous fluids. The valves also permit an evaluation of the condition of exterior casing seals at any time after installation. Casing packers allow multiple seals to be established easily and quickly, providing the required hydraulicisolation of each monitoring zone. The modular design of the downhole components means the number and location of monitoring zones and seals can be modified on the basis of the best information available in the field at the time of installation. The exact depth of monitoring zones need not beknown when equipment is purchased.

Field quality control procedures have been established which permit the quality of a well installation and the proper operation of testing and sampling procedures and equipment to be routinely verified. Thus, groundwater data and the additional data required to define the quality of the field data can be routinely collected. Furthermore, when a high density of groundwater monitoring zones are installed by using multi-level monitoring wells, the redundant monitoring points can provide important corroborative field data to an extent which is not available with single level monitoring wells. The result is a monitoring system which provides data with a degree of defensibility unattainable with any other monitoring method, single or multi-level.

References

- Patton, F.D. and H.R. Smith. 1986. Design considerations and the quality of data from multiple-level groundwater monitoring wells.
 Proc. ASTM Symp. on Field Methods for Groundwater Contamination Studies and Their Standardization. Cocoa Beach, FL.
- Bouwer, H. and R.C. Rice. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, Vol. 12, No. 3, June 1976.
- Cooper, H.H., Jr., J.D. Bredehoeft, and S.S. Papadopulos. Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, Vol. 3, No. 1, First Quarter 1967.
- Hvorslev, J.M. Time lag and soil permeability in ground-water observations. Bull. 36, U.S. Corps of Eng., Waterways Exp. Sta., Vicksburg, MI, 1951.
- NOTICE The sliced-circle logo, Westbay logotype, MP System and MOSDAX are registered trademarks of Westbay Instruments Inc. MProfile and MLog are trademarks of Westbay Instruments Inc.

Attachment I):
RHMW11 Boring Log an	d
Geophysical Record of Borehol	е

This page intentionally left blank

Project: CTO53 - Red Hill Bulk Fuel Storage Facilty Project Location: CTO53 Project Number: 60481245

Log of Boring RHMW11

Sheet 1 of 32

Drilling Method Trotary 8" OD HSA / HQ core / PQ core / air rotary Drill Bit SizerType HQ/PQ diamond bit / 9.5" tricone bit Total Depth of Borehole Drill Bit Type Mobile B-59 / T3 Drilling Contractor Valley Well Drilling Approximate Surface Elevation Borehole E1.18.27 (10/26/2017) Location N75290.368, E1675370.691 Inclination from Horizontal/Beam Borehole Westbay Well Hammer Data 1 Hammer Data 1 Vialey Valley Sizer Borehole SAMPLES Ugen Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	J. Kronen																	
Drilling Type Mobile B-S9 / T3 Drilling Contractor Valley Well Drilling Approximate Surface Elevation Brock E1.18.27' (10/26/2017) Location N75290.368, E1675370.691 Inclination from HorizontalBearin Brock Brock Westbay Well Harmer Data 1 Tormany Surface Westbay Well Harmer Data 1 Vision N75290.368, E1675370.691 Inclination from HorizontalBearin Brock Tormany Surface Westbay Well Harmer Data 1 Vision NOCK CORE Brood (1) U Vision Brood (1) Vision Brood (1) Vision U Vision Brood (1) U Visitif (1) Visitif (1)	492.5 feet																	
Location N75290.366, E1675370.691 Inclination from Information Borehole Completion Westbay Well Hammer Data 1	Approximate 210.38 feet																	
Borehole modelion Westbay Well Hammer Data 1 Image: Termination of the second state of the second stat	n 90° aring																	
ROCK CORE Amples i	140 lbs/30-inch drop																	
Ling Control State State 1 1 1 1 1 1 1 1<																		
Image: series of the series	FIELD NOTES AND TEST RESULTS RESULTS																	
9 10 11 12 13	L L L L Air knife to 22.8 ft bgs. Visually logged open hole. Installed 16 1/4" steel casing to 20 ft bgs. Pour 4 bgs. our 4 bgs. our 4 bentonite chips in annulus																	
	Proje Proje Proje	ect: ect Lo ect Ni	CT ocat	053 ion per:	3 - F : C 60	Red TO5 0481	Hill 3 245	Bulk	Fuel	Storage Facilty		Log	of	Bc She	orir eet 2	1g 2 of	RH 32	MW11
---	-------------------------	--	------------	--------------------	--------------------	--------------------	------------------	-------------------------------	-----------	--	--	----------------	----	------------------	-------------------	-------------------	-----------------------------	--
Ē				_									.					
i	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures X	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPT	ΓΙΟΝ	citomodo IIo/M		Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
Report: CT053 RED HILL WITH WELL AND PID; FIIe: CT053 RED HILL CORE LOGS.GPJ; 2/9/2018 RHMW11		14 - 15 - 14 - 15 - 16 - 17 - 16 - 17 - 17 - 18 - 17 - 18 - 19 - 17 - 18 - 19 - 17 - 18 - 19 - 17 - 18 - 19 - 17 - 18 - 19 - 17 - 18 - 19 - 17 - 18 - 18			100					Soft, moist, variable colored Dark reddish 3/2) to yellowish red (5YR 4/6), CLAY (Ct high plasticity, 20% fine to coarse sand ar subangular gravel to 1", no odor Dry, gray (2.5Y 6/1 to 2.5Y 5/1), friable B/ oxidized on breaking surfaces, no odor	h brown (51 H) with san nd ASALT,	α		1	25 56 50	0.2		End of drilling 9/25/17; begin 10/02/17; Begin using 8" O.D. (4.24" I.D.) hollow stem auger and California Sampler

Log of Boring RHMW11

Sheet 3 of 32

				F	ROC	кс	ORE				ITIC	SA	MPLE	s		
	Elevation, feet	b Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	well schema	I ype Numher	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		23 30- 31- 31- 32-			100					Moist, Sandy CLAY (CH), ~15% SAND Moist, Brown (5YR 3/2) to gray (5YR 4/1) with orange mottling (5YR 5/6), Sandy Clayey GRAVEL (GC), ~30% fine to coarse sand, no odor Dry, gray (2.5Y 6/1) friable BASALT		2	9 17 38	0.1		
		33- 34-								- - - - - - - - - - - -						
		35- 								- Wet, dark brown (7.5YR 3/2), Clayey Sandy GRAVEL (GC), 15% clay, 30% fine to coarse sand, angular to subangular gravel to 1.5", no odor		3	15 21 25	0.1		
		36 - -			100					 Moist, gray (10YR 5/1) to dark gray (10YR 4/1), highly friable BASALT, no odor Moist, dark brown (7.5YR 3/2), Clayey Sandy GRAVEL (GC), 10% clay, 20% fine to coarse sand, rounded gravel to 2" no odor 						
018 RHMW11		37-														
DRE LOGS.GPJ; 2/9/20		38 - - - - - - - - - - - - - - - - - - -														
TO53 RED HILL CO		40 - - - 41 -			100					Wet, gray (7.5YR 5/1) mottled with dark brown (7.5YR 3/2), highly fractured BASALT with CLAY (GC), no odor		4	12 15 23			
AND PID; File: C		42			100					Wet, brown (10YR 4/3), Clayey Sandy GRAVEL (GC), medium plasticity, rounded gravel to 2.5", (possible slough)		5	18 20 50	0.0		
LL WITH WELL		43 - 								Moist to dry, gray (7.5YR 5/1) with yellowish brown (7.5YR 5/6) mottling, highly fractured, friable BASALT with trace clay Wet, yellowish red (5YR 5/6), Silty Sandy GRAVEL		6	13 25 50	0.0		
TO53 RED HIL		44 –			100					Wet, gray (7.5YR 5/1) with yellowish brown (7.5YR 5/6) mottling, highly fractured, friable BASALT with trace clay		7	20	0.0		
Report: C		45								<u> </u>			40			

Log of Boring RHMW11

Sheet 4 of 32

1				F	ROC	кс	ORE				÷		SAMPL	ES		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Mall Schams	Type	Number Blows ner fnot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		43 46 47			100 60					Dry, gray (7.5YR 5/1) with strong brown (7.5YR 5/6) mottling, highly fractured, friable BASALT with ~10-20% clay, no odor Dry, gray (10YR 3/2), Sandy GRAVEL (GW), slight silt/clay, fine to coarse sand, rounded to subrounded gravel to 1", mostly 1/4" gravel, 25% silt, 40% sand, 45% gravel			8 23 50/4 50/-	" 0.0		
		48 - - - 49 - - - -			47					Dry, gray (10YR 5/1) with yellowish brown (10YR 5/6) and very dark brown (10YR 2/2) mottling, highly fractured, friable BASALT with silt/clay, high plasticity, subrounded gravel to 2.5" with angular fractured rock fragments, no odor Stiff, dry, dark brown (10YR 3/3) with brown (10YR 5/3) oxidized mottling, Sandy CLAY (CH) with gravel, high plasticity, subrounded gravel to 2", no odor			9 20 50/2 50/2	0.0		End of drilling 10/02/17; begin 10/03/17
		50 51 52								← ← ← Clay grades to olive gray (5Y 4/2) ← ← ← ← ← highly friable and fractured BASALT				0.0	[60]	Begin coring using HQ system Water loss ~400 gal
S.GPJ; 2/9/2018 RHMW11		53 - 	10	1	66		0			v grades with highly friable/weathered basalt cobbles						
E CTO53 RED HILL CORE LOG		55 - - 56 - - - - - - - - - - - - - - - - - - -								highly weathered, friable and fractured BASALT				0.0	[37.5]	Water loss ~350 gal
HILL WITH WELL AND PID; Fik		58 - - - - - - - - - - - - - - - - - - -	11	2	66		0									
Report: CTO53 RED		60 												0.3	[30]	

Log of Boring RHMW11

Sheet 5 of 32

ſ				F	ROC	K C	ORE				, 1	LIC LIC	SA	MPLE	S		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Moll Cabamo	well schema	l ype Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		62 - 63 -	12	2	100		0			Basalt Boulder, massive a'a, gray (10YR 5/1), moderately to highly weathered, very weak to weak, <1% vesicles							End of drilling 10/03/17; begin 10/04/17 Water loss ~200 gal
		64 - -															
		65 - - - -								no recovery					0.1	[60]	
		67- 	13		84		0			- - - - - - - -							Water loss ~180 gal
018 RHMW11										VOLCANIC SAPROLITE Moderately to completely weathered basalt rock, extremely weak to weak, weathers to sandy and gravelly clay and clayey gravel €9 ft to 70 ft basalt boulder from 69 ft to 70 ft, massive a'a, very dark gray (7.5YR 3/1) with red brown stains bipbly weathered very weak fractures are very							
E LOGS.GPJ; 2/9/2		70		3						tight with Fe+Mn hor recovery saprolite derived from pahoehoe					0.1	[50]	
53 RED HILL COR		72 –	14		80		0			- 							Water loss ~300 gal
ID; File: CTO		73- - -								saprolite derived from massive a'a - -							
H WELL AND P		74- - 75-															
TO53 RED HILL WITH										no recovery					0.0	[75]	End of drilling 10/04/17. Hole reamed to 15 1/2 inches from 42.7-75 ft bgs. Installed 10" steel casing to 75 ft bgs. Tremie grout
Report: C		77 -								-							into annuius:

Log of Boring RHMW11

Sheet 6 of 32

			F	ROC	кс	ORE					2		SAN	IPLE	s		
Elevation, feet	Lepth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Concernation of the second sec		Type	Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
	78-	15	3	60		0			 Basalt Boulder, very dark greenish gray (GLEY 1 3/5GY) weak, highly fractured, with dark yellowish brown (10YR 4/4) clay Stiff,dark brown (10YR 3/3) with reddish yellow (7.5YR 6/8) mottling, Sandy CLAY (CH) with gravel, fine to 								450 gal grout total (27.5 - 94 lb bags of cement, 3 - 50 lb bags bentonite). Begin drilling 10/11/17 Water loss ~100 gal
	79_ - 80_ -		4		_		-		 coarse sano, externely weak to weak, angular graver to ~1", high plasticity (Volcanic Saprolite) 						0.1	[20]	
	81 - - - 82 -																
	83-	16		90		0											Water loss ∼100 gal
	84 - - - 85 -				-				- ↓ Contains occasional 2" angular to subangular gravel -						-	[75]	Good water circulation near bottom of run 16 End of drilling 10/11/17: begin
	86 								- - - - - - - -								10/12/17
	87	17		60		0			0.2 ft zone of weak basalt cobble								Good water circulation, no water loss
	89 - 		5						- v 0.2 ft zone of intensely fractured, weak, basalt _ cobble								
	90 		5						- ho recovery						-	[50]	
	92- 93-	18		76		0			Basalt Boulder, massive a'a, highly to intensely fractured Dark brown (10YR 3/3),Clayey Gravelly SAND (SC), highly weathered to completely weathered basalt with clayey zones (Volcanic Saprolite)								Good water circulation, water loss ~25 gal

Report: CTO53 RED HILL WITH WELL AND PID; File: CTO53 RED HILL CORE LOGS. GPJ; 2/9/2018 RHMW11

Log of Boring RHMW11

Sheet 7 of 32

			F	ROC	кс	DRE				,	2	SA	MPLE	S		
Elevation, feet	b Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Wall Schama		Type Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
	93 								- - - - ↓ becomes clayey sandy gravel (GC)							
	96								-					0.0	[30]	
	97 - - -	19	5	100		0			grayish green (GLEY1 5/10Y) massive a'a boulder, moderately weathered, weak yelowish red (5YR 5/6) clayey sandy gravel (GC).							Good water circulation, water loss ~25 gal
	98 - - - 99 - - -								highly weathered, extremély weák to weák basalt							
	100				_		NR		no recovery 1. 0, J, VN, Fe+Mn, Sp, Wa, R 2. 20, J, VN, Fe+Mn, Sp, Pl, S					0.0	[60]	
	101 — - - - - - - - - - - - - - - - - - - -								3. 10, J, VN, Fe+Mn, Sp, Wa, SR 4. 70, J, VN, Fe+Mn, Sp, Pl, SR 5. 10, J, VN, Fe+Mn, Sp, Pl, SR 6. 10, J, VN, Fe+Mn, Sp, St, SR 9. 10, J, VN, Fe+Mn, Sp, St, SR 9. 10, J, VN, Fe+Mn, Sp, St, SR							Good water circulation,
	103- 	20		86		0			with yellowish red (5YR 5/6) in fractures, moderately to highly weathered, highly fractured							water loss ~25 gal
	104		6						- - - - -					0.0	[100]	
	- 106 - -						ρr ₩∎		Basalt massive a'a GLEY1 5/6 weak to moderately							
	107 - - - - 108 -	21		70		0			strong, ~15% vessicles 1-3mm (Volcanic Saprolite) ✓ vessicles become 0.5-3mm 1. 10, J, VN, Fe+Mn,St, SR 2. 90, J, VN, Fe+Mn, Wa, SR 3. M 4. 45, J, VN, Fe+Mn, Wa, SR 5. 70, J, VN, Fe+Mn, Wa, SR							Good water circulation, water loss ~25 gal
	109						₹		6. 45, J, T, Fe, St, S							

Report: CTO53 RED HILL WITH WELL AND PID; File: CTO53 RED HILL CORE LOGS.GPJ; 2/9/2018 RHMW11

Project: CTO53 - Red Hill Bulk Fuel Storage Facilty Log of Boring RHMW11 **Project Location: CTO53** Sheet 8 of 32 Project Number: 60481245 ROCK CORE SAMPLES Well Schematic Elevation, feet Drill Time [Rate, ft/hr] **FIELD NOTES** (mdd) Recovery, Fractures per Foot % Fracture Drawing Number Lithology Depth, feet Type Number Blows per foot No. Run No. MATERIAL DESCRIPTION AND TEST Ď RESULTS Box Ø DID മ 109 IF 1 -clayey intensely fractured clinker zone, highly weathered 110 0.0 [43] NR 6 no recovery 111 IF no clay basalt, massive a'a, 5Y 4/1, 1-5% vesicles 1. 45, J, W, Cl, Fi, Wa, SR 2. 45, J, VN, Fe+Mn, Sp, Wa, SR 3. 0, J, N, Fe+Mn+Cl, Pa, St, SR 4. 45, J, W, Cl-Sd, Fi, Wa, SR 5. 45, J, N, Mn+Cl, Pa, Pl, SR 6. 45, J, VN, Fe+Mn, Sp, St, SR 7. 45, J, VN, Fe+Mn, Sp, St, SR 8. 30, J, VN, Fe+Mn, Sp, Wa, SR 9. 45, J, VN, Fe+Mn, Sp, Wa, SR 112 Good water circulation, water loss ~25 22 80 8 gal 113 114 10. M 11. 45, J, VN, Fe+Mn, Sp, Wa, SR 12. 0, J, VN, Fe+Mn, Sp, Wa, SR 13. 45, J, VN, Fe+Mn, Sp, Wa, SR 7 115 10 Basalt, pahoehoe, moderately weathered, moderately strong, highly fractured (Volcanic Saprolite) 0.0 [50] 11 12 Basalt, massive a'a, dark gray (5YR 4/1) to dark reddish brown (5YR 3/3), highly weathered, highly to intensely fractured with zones of clay and fine to 13 116 coarse, angular sand, occasional rounded gravel to 2"(Volcanic Saprolite) 117 Good water circulation, water loss ~25 23 70 0 gal 118 119 NR no recovery 120 0.0 [30] 121 becomes 5Y 4/1, slightly weathered, strong, 5% 122 vesicles <0.5mm Good water becomes <5% vesicles</p> circulation. water loss ~25 gal 24 86 12 123 124 clayey sand (SC) with rounded gravel to 0.5" from 124 ft to 124.3 ft 8 becomes moderately weathered, moderately strong, 25% vesicles 1-2mm 125

CT053 RED HILL WITH WELL AND PID; File: CT053 RED HILL CORE LOGS. GPJ; 2/9/2018 RHMW1

Report:

Log of Boring RHMW11

Sheet 9 of 32

				F	ROC	кс	ORE				itic	;	SAN	IPLE	s		
	Elevation, feet	, Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing	Lithology	MATERIAL DESCRIPTION	Well Schema	Type	Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		126	25		66		0			no recovery becomes very dark bluish gray (GLEY2 3/10B) with yellowish red (5YR 5/6) oxidation on fracture surfaces, moderately strong to strong, intensely to highly fractured 1. 90, J, MW, Pa, Ir, R 2. 90, J, MW, Pa, Ir, R - 3. 80, J, W, CI+Sd+Gr, Fi, Ir, R					0.0	[43]	Good water circulation, water loss ~25 gal
		- 129 - - -		8				Jan Ja		- - - - - -							
		130						NR		no recovery					0.0	[21]	
		131 — 								- 1.90, J, VN, Fe+Mn+Cl, Pa, Ir, R 2.45, J, VN, Fe+Mn+Cl, Pa, Ir, R 3.45, J, VN, Fe+Mn+Cl, Pa, Ir, R 4.0, J, N, Fe+Mn+Cl, Pa, Ir, R 5.70, J, N, Fe+Mn+Cl, Pa, Wa, R 6.30, J, MW, Fe+Mn+Cl, Pa, Ir, R							
		132-						£®∎									Good water
3 RHMW11		- 133 - -	26		94		22			reddish brown (2.5YR 4/3) stiff clay (weathered clinker zone)							circulation, water loss ~25 gal
2/9/2018		134						ALS.		- 							
RE LOGS.GPJ;		135-						NR		no recovery					0.0	[43]	
HLL CO		136-						IF		-							
File: CTO53 RED H		137	27	9	90		0	IF V		- - - - - -							Good water circulation
JD PID;		138						M		⊢							
HILL WITH WELL AN		- - 139- - - -						234		- 3. 20, Ĵ, Ń, Fe+Mn, Pa, Ĭr, R - 4. 30, J, N, Fe+Mn, Pa, Ir, R 							
53 RED		140-						-		no recovery					0.0	[50]	
Report: CTO5		141-															

Log of Boring RHMW11

Sheet 10 of 32

Γ				F	ROC	кс	ORE				tic		SAN	/IPLE	s		
Elevation	feet	Leet feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schema	Type	Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		142 - 143 -	28	9	90		12			 becomes weak to moderately strong, vesicles 0.5-1mm becomes highly weathered, very weak to weak, intensely fractured with reddish brown (2.5YR 4/3) clay 1. 45, J, VN, Fe+Mn, Pa, Ir, R 							Good water circulation, no water loss
		144															
		145-								becomes extremely weak					0.0	[43]	
		146								⁻ 1. 45, J, N, Cl, Fi, Ir, R ⁻ 2. 60, J, VN, Cl, Fi, Pl, SR ⁻ 3. 30, J, N, Cl, Fi, Ir, R ⁻ 4. 20, J, VN, Fe+Mn, Pa, Ir, R ⁻ 5. 90, J, VN, Fe+Mn, Pa, Ir, R ⁻ 6. 45, J, VN, Cl, Fi, Pl, SR ⁻ 7. 30, J, VN, Cl, Fi, Pl, S							
		147-								-							Good water
		- - - - - - - - - - - - - - - - - - -	29		100		0			↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓							circulation, no water loss
MW11		149		10				6									
2/9/2018 RH		150						7		- v becomes highly weathered, extremely weak					0.0	[38]	
RE LOGS.GPJ;		151 -								 becomes highly to moderately weathered, weak to moderately strong 							
L COF		152-															
RED HI			30		90		8										Good water circulation, no water loss
File: CTO53 F		153					Ŭ			 reddish brown (2.5YR 4/3), Welded Clinker, highly weathered, extremely weak 							
O PID;		154-								becomes grayish green (GLEY1 4/2) highlyweathered, weak							
VITH WELL AND		- 155 -													0.0	[60]	End of drilling
53 RED HILL W		156		11						ho recovery							10/13/17
t: CTOE		-						₹ Tyle		clay (CH), high plasticity, completely weathered							
Report		157				I		M							<u>г</u>		

Log of Boring RHMW11

Sheet 11 of 32

ſ				F	ROC	кс	ORE				:	tic	SAI	IPLE	S		
	Elevation, feet	Lepth,	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION		Well Schema	I ype Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		158	31		82		0			1. 60-70, J, VN, Fe+Mn, Pa, Ir, R 2. 60-70, J, VN, Fe+Mn, Pa, Ir, R 3. 60-70, J, VN, Fe+Mn, Pa, Ir, R 4. 60-70, J, VN, Fe+Mn, Pa, Ir, R							Good water
		159 -						M		 weak, intensely fractured participation (2.5) (2.5) (4.2), voly weak, intensely fractured with zones of clay (Volcanic Saprolite) ✓ becomes dark greenish gray (GLEY1 4/10Y), extremely weak 							water loss
		160 - 				-		74A M		no recovery					0.0	[100]	
		161 -		11				1		- - - 1. 30, J, MW, Fe+Mn, Sp, Ir, R - 2. 5, J, VN, Fe+Mn, Sp, Ir, R -							
		162 -	32		92		18	2 									Good water circulation, no water loss
		163								 Stiff, Reddish brown (2.5YR 3/3), Sandy CLAY (CH) with gravel, fine to coarse sand, subrounded to subangular extremely weak gravel predominantly <0.5" (Volcanic Saprolite) 							geotechnical sample from 162.6 ft to 163.6 ft
		164 - -						м		- 							
8 RHMW11		165 - -				-		M		- 					0.0	[100]	Hole reamed to 9 1/2" from 75-165 ft bgs. Installed 5"
GPJ; 2/9/201		166						M		- - - - ↓ → becomes ~50% sand	<u> Xeinteinteine</u>						steel casing to 165 ft bgs. Tremie grout into annulus: 550 gal grout total (3 - 94 lb
CORE LOGS.		167-	33		100		20	M		- 	<u>"Dkibribri</u> b						bags of cement, 1/4 - 50lb bags bentonite) Good water
3 RED HILL (168-								r grades with dark greenish gray (GLEY1 4/10Y) angular basalt cobbles	<u> </u>	NUL VILLA					circulation, no water loss
); File: CTO5		169 –		12				M TFF IF		- - - 2.5YR 5/6 to 2.5YR 4/6 welded clinker, highly - weathered	<u>Viribiliti</u>						
VELL AND PIL		170						WR		no recovery	<u>ubululuu</u>				0.0	[60]	
HILL WITH V		171						F		↓ 2.5YR 4/2 pahoehoe, highly weathered, extremely weak, 35% vesicles <1.5 mm	<u> </u>	ALL					
CTO53 RED		172-	34		72		0			 Stiff, 7.5YR 4/2, gravelly CLAY (CH) with cobbles and boulders, gravel extremely weak, subangular to angular, typically <1", highly to completely weathered massive a'a and pahoehoe (Volcanic Saprolite) 	<u>uhahahaha</u>						Good water circulation, no water loss
Report.		173-							<u>r∠⊿⊥</u>		17						

Project: CTO53 - Red Hill Bulk Fuel Storage Facilty Log of Boring RHMW11 Project Location: CTO53 Sheet 12 of 32 Project Number: 60481245 ROCK CORE SAMPLES Well Schematic Elevation, feet Time te, ft/hr] FIELD NOTES (mdd) Recovery, Fractures per Foot % Fracture Drawing Number Lithology Depth, feet Number Blows per foot °. Run No. MATERIAL DESCRIPTION AND TEST Ď Drill Tir [Rate, 1 Type RESULTS Ø ЪD Box ്ഥ 173 I 174 12 Collect geotechnical sample from 174.3 ft to 175.0 ft 175 0.0 [75] lie 176 177 lιΕ greenish gray (GLEY1 4/10Y) with strong brown M (5YR 5/8) oxidation, basalt a'a, highly weathered, extremely weak to very weak, intensely fractured ✓ 2.5YR 3/2, basalt pahoehoe, highly weathered, extremely weak, 40% vesicles up to 1mm 35 100 22 178 greenish gray (GLEY1 4/10Y) with strong brown (5YR 5/8) oxidation, basalt a'a, highly to completely weathered, extremely weak, intensely fractured 179 13 180 M [75] -2.5YR 3/2, basalt pahoehoe, completely to highly weathered, extremely weak, 40% vesicles up to 1mm M 181

RHMW1 2/9/2018 File: CT053 RED HILL CORE LOGS.GPJ; CTO53 RED HILL WITH WELL AND PID; Report:

Good water circulation, no water loss ← becomes stiff to soft, 7.5YR 4/2 to 7.5YR 5/2 CLAY (CH) with dark greenish gray (GLEY1 4/10Y) gravel and cobble fragments 182 Good water circulation, no water loss remnant pahoehoe structure visible, 30% vesicles 1-2mm 100 0 36 183 vesicles increase to 3mm 184 185 [60] NR no recovery Very stiff, brown (7.5YR 4/2) clayey sandy GRAVEL 186 (GC), gravel highly weathered, extremely weak, subrounded to subangular greenish gray (GLEY1 4/10Y) and strong brown (7.5YR 5/6), with basalt a'a cobbles, highly to completely weathered basalt (Volcanic Saprolite) 187 14 Good water circulation, no water loss 0 37 84 dark greenish gray (GLEY1 4/10Y), basalt a'a cobble, highly weathered, very weak from 188.1 ft to 188.5 ft $\,$ 188 bgs vgravel predominantly a'a clasts with some pahoehoe 189

Project: CTO53 - Red Hill Bulk Fuel Storage Facilty Log of Boring RHMW11 Project Location: CTO53 Sheet 13 of 32 Project Number: 60481245 ROCK CORE SAMPLES Well Schematic Elevation, feet Time te, ft/hr] FIELD NOTES (mqq) Recovery, Fractures per Foot % Fracture Drawing Number Lithology Depth, feet Type Number Blows per foot °. Run No. MATERIAL DESCRIPTION AND TEST Ď Drill Til [Rate, RESULTS Ø ЪD Box ്ഥ 189 M Brown (7.5YR 4/2) sandy clay (CH) with gravel, Τ residual pahoehoe structure evident v 190 0.0 [60] Collect NR no recovery geotechnical sample from 189.5 ft to 190 very stiff, brown (7.5YR 4/2) clayey sandy GRAVEL (GC), gravel highly weathered, extremely weak, subrounded to subangular greenish gray (GLEY1 4/10Y) and strong brown (7.5YR 5/6), highly to 191 completely weathered basalt (Volcanic Saprolite) 192 N۸ Good water circulation, no water loss 90 38 20 193 14 basalt boulder, massive a'a, grayish green (GLEY1 4/5GY) with strong brown (7.5YR 5/6) oxidized zones, highly to completely weathered, very weak to extremely weak, intensely fractured 194 I 195 0.0 [75] Collect NR Collect analytical sample RHMW11-BS01-S01 -D195.1-195.5 from 195.1 ft to 195.5 no recovery M 196 M М М basalt boulder, massive a'a, dark greenish gray 197 (GLEY1 4/5GY), highly weathered, Good water circulation Total very weak to extremely weak water loss from 155 ft through 200 ft is 10 gal 39 90 26 198 M basalt cobble, pahoehoe, dark reddish brown (5YR 3/3), completely to highly weathered, extremely weak, relict structure intact, ~40% 199 vesicles 0.5-1mm basalt boulder, massive a'a, dark greenish gray (GLEY1 4/5GY), highly weathered, M very weak to extremely weak IF 50 200 15 End of drilling 10/13/17; begin 10/16/17 М 0.0 [43] M 201 M М IF 202 basalt boulder, massive a'a, dark greenish gray (GLEY1 4/5GY), highly weathered, very weak Water loss ~20 aal 40 100 20 203 204 E М 205

Report: CTO53 RED HILL WITH WELL AND PID; File: CTO53 RED HILL CORE LOGS.GPJ; 2/9/2018 RHMW1

Log of Boring RHMW11

Sheet 14 of 32

ſ				F	ROC	кс	ORE				i,		SAN	IPLE	s		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Mell Schems		Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		205		15						no recovery	<u>«بايا» بايا» بايا»</u>				0.0	[75]	
		207 -	41		90		0	ALX PIC		basalt boulder, massive a'a, dark greenish gray (GLEY1 4/5GY), highly weathered, very weak	<u>Urbibibib</u>	NUMBER					Good water circulation, water loss ~20
		208 - - -	41		90		0			 Welded Tuff, highly to completely weathered, extremely weak, weathers to brown (7.5YR 4/2) clay with dark greenish gray (GLEY1 4/5GY) to black (GLEY1 2.5/N) basalt a'a gravel to cobble clasts, occasional red (10R 4/6) clast, stong brown (7.5YR 5/6) mottling around clasts(Volcanic Saprolite) 	<u>sususus</u>	SUDVID SUDVID SUDVI					gal
		209		16				м			W:W:W:W:W	IN THAT IN THE					
		210		10				-		no recovery					0.0	[50]	End of drilling 10/16/17; begin 10/23/17 using
		211 - - -						IF M M M		basalt boulder, massive a'a, dark greenish gray (GLEY1 4/5GY), highly weathered, very weak, ✓ very stiff	<u>habentation</u>	15:DEDEDEDED					PQ coring system
		212						— М		-							Good water
RHMW11		213	42		90		0	M M M M M M									water loss ~20 gal
GPJ; 2/9/2018		214						M 1 1			<u>«المالمة المالة الم</u>	M.M.M.M.M.					
LOGS.		215						M		-		1111			0.0		End of drilling
3 RED HILL CORE		216 -	43	17	100		0			- - - - - -		SUDVID SUDSID					10/24/17
: CT053		217								Stiff, reddish brown (5YR 4/3) clay (CH), highly to completely weathered pahoehoe, extremely weak, relic		1.11					
L AND PID; File.		218- -						-		 structure still visible, 30% vesicles 0.5-1mm (Volcanic Saprolite) no recovery 		KINKINKINKI			0.0	[300]	Some water circulation, water loss ~50
WITH WEL		219		18				M		 becomes dark greenish gray (GLEY1 4/10Y) 	<u>thur the second second</u>						gal
RED HILL		220	44		90		46	M		- ∲—becomes yellowish red (5YR 5/6) - 1. 20, J, VN, Cl, Sp, Ir, R							
Report: CTO53		221						1									

Log of Boring RHMW11

Sheet 15 of 32

ſ				F	ROC	кс	ORE				atic		SAMPL	S		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schema	Tvne	Number Blows Der foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		222		18				—_М М М		Basalt, pahoehoe, dark greenish gray (GLEY 4/10Y), moderately weathered, extremely weak, vesicles increase to 2mm (Volcanic Saprolite) becomes yellowish red (5YR 5/6)	<u>بليدليدليدليد لي</u>					
		223						F		· - - -	<u>, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>			0.0	[50]	
		- 224								· ↓ grades with dark greenish gray (GLEY 4/10Y) · banding, 15% vesicles ~1mm · ↓ dark greenish gray (GLEY1 4/10Y), very weak, 15-25% vesicles 1-2mm	ut distair	N. M. W. M. W.				Some water circulation,
		225	45	19	100		0	IF								water loss ~80 gal
		226 - -								· - 						
		227 -								 basalt boulder, massive a'a, dark greenish gray (GLEY1 4/10Y), moderately weathered, very weak, <5% vesicles 	<u>hribtibtib</u>					
		228						IF		Brown (7.5YR 4/4), clayey gravel (GC) completely to highly weathered basalt, extremely weak, subrounded, medium to coarse sand clasts and occasional gravel and cobble in clay matrix (Volcanic Saprolite)	<u> </u>	<u></u>		0.0	[27]	
RHMW11		229		20						v pahoehoe cobble						Some water circulation, water loss ~150
J; 2/9/2018		230-	46	20	100		0									gal
RE LOGS.GP		231-								· - -						
SED HILL CO		232						V		dark olive gray (5Y 3/2) pahoehoe boulder, dark valve gray (5Y 3/2) pahoehoe boulder,	<u>utativ</u>	NUMUN				
File: CTO53 F		233-						NR		- 2-3mm - - no recovery	***			0.0	[23]	
- AND PID;		234-						[™]				DUDUDUD				Some water circulation, water loss ~100
. WITH WELL		235-	47	21	74		0	-C		1. 45, J, T, No, No, PI, SR	<u>*************************************</u>					gal
J53 RED HILL		236-						JF								
Report: CT(237-						1		: }	पाय					

Log of Boring RHMW11

Sheet 16 of 32

ſ				F	ROC	K C	ORE						SA	MPLE	S		
	Elevation, feet	- ZSZ Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION			I ype Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
				21				F							0.0	[38]	End of drilling
		238-						L		 basalt boulder, massive a'a, very dark gray (5Y 3/1), moderately weathered, very (sy a)(1), moderately weathered, very 		DEDED					10/24/17; beğin 10/25/17
		220								 Weak, intensely fractured, <5% vesicles 1. 20, J, VN, Si, Fi, Ir, SR 2. 0, J, N, Cl, Sp, Ir, R 2. 0, L 2. Cl, Sp, Ir, R 							
		235						*		4. 10, J, N, Cl, Sp, Ir, R Yellowish brown (10YR 5/6), basalt a'a clinker, highly							
		240	48	22	100		22	~2		weathered, extremely weak to very weak, red (2.5YR							Good water
		-						3		wathered, weak,15-20% vesicles, some vesicles filled with white clay (Volcanic Saprolite)							circulation, water loss ~20 gal
		241-						I		intensely fractured							
		242						~~~~		- - y── becomes highly weathered, weak, ~25% vesicles, ─ all vesicles filled with white clay -							
		-						4		- · · · · · · · · · · · · · · · · · · ·					0.0	[38]	
		243						м									
		244						м		- - 							
										1. 30, J, VN, CI, Fi, PI, S ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		D ST D ST					
HMW11		245	49	23	60		34	M M M		- · · · · · · · · · · · · · · · · · · ·							Good water
018 RF		-						M M M				111111					water loss ~10 gal
J; 2/9/2		246-						NR									
JGS.GP		247-										D KID KIT					
CORE L(-								ho recovery		4.11.11			0.0	[27]	
D HILL (248-						NR				1.11.11					
ro53 re		249-						-				111111					
File: C1								£}"		 Basalt, massive a'a, grayish black (GLEY1 2.5/5GY), moderately weathered, weak to moderately strong, intensely fractured, oxidized fracture surfaces 		Dr.Dr.					
ND PID;		250	50	24	70		0	÷₹∎		- (Volcanic Saprolite) 		8 11111					Good water
WELL AF		-						N N		2. 70, J, ?, Fe+Mn+Cl, Pa, Ir, R 3. 90, SH, T, Fe+Mn+Cl, Pa, Pl, Slk		111111					water loss ~10 gal
L WITH \		251 - -						M		Basalt, pahoehoe, reddish brown (5YR 4/3 to 5YR 4/4), highly weathered, weak, 40% vesicles 1-2mm, most vesicles filled with white clay from 250.9 to 251.2 ft							
SED HILI		252								(Volcanic Saprolite) at 251.2 ft becomes grayish black (GLEY1 2.5/5GY) with veins of white clay, moderately weathered, weak	TT III	<u>Nr:Nr:T</u>					
CT053 F		-						E ² M		to moderately strong, ~25% vessicles		11:11:11			0.0	[60]	
Report:		253						130 3		Г	1						

Log of Boring RHMW11

Sheet 17 of 32

				F	ROC	кс	ORE				;+	2	SA	MPLE	s		
	Elevation, feet	bepth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Moll Schome		l ype Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		255 - - - - - - - - - - - - - - - - - -						IF		 intensely fractured, many fracture planes are planar/slickensided, white clay infill in vesicles 	<u>«بلداما» للداما» للماهما المعامات المعامات المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة المع</u>						Good water circulation, water loss ~10 gal
		255-	51	25	90		0	10 1		- - - - - - - - - - - - - - - - - - -							
		256 - - - 257 -						IF IF		T. 00-90, Sil, T, Perivititol, FI, II-PI, Sik — — — — — — — — — — — — —							
		258						NR		no recovery	<u>ליגלויגעיי</u> ע				-	[33]	
		259 -		26				M		 weathered, extremely to very weak, vesicles filled with white clay, frequent extremely weak zones of red (10R 4/6) alteration 	*						
		260	52		86		52	1		_ ↓red zones no longer obserrved	hinkulan						Good water circulation, no water loss
/2018 RHMW11		261						IF IF		Basalt boulder, massive a'a, grayish black		AND CULLUNIT					
LOGS.GPJ; 2/9		263						JIII III		 (GLEY12:5/5GY), intensely fractured, fractured planes oxidized with common slickensides and white clay, <5% vesicles 1-2mm 1. 70, Sh, ?, Fe+Mn+Cl, Pa, Ir, Slk-SR contains subrounded clasts coarse sand to gravel size up to 2", some clasts are vellowish red (5YR 5/6) 					-	[27]	
RED HILL CORE		- 264		27				If		- - 1. 90, Sh, VN, Cl, Cl, Fi, Pl-Ir, Slk	<u>Aribibibibibi</u>						
; File: CTO53 F		265	53		100		10	M I IF		 Basalt, pahoehoe, yellowish red (5YR 5/6), completely weathered, extremely to very weak (Volcanic Saprolite) becomes dark gray (5YR 3/1), very weak, ~40% vesicles, some filled with white clay, with yellowish red 							Good water circulation, no water loss
1 WELL AND PIC		266						TE			<u>لانالانلانلانلا</u>	DUDUDUDUD					
3 RED HILL WITH		268		28				70 1		 moderately weathered, moderately strong, 15% vesicles 1-2mm 1. 90, J, ?, Fe, Su, Ir, R 2. 60, J, N, Fe, Su, Ir, R 	***	<u> </u>			-	[43]	
Report: CTO5.		269-						3 M		- ₩ 0.2 ft zone of 4mm vesicles filled with clay - 3. 70, J, VN, Fe+Mn+Cl, Fi, Pl, S-SR -	<u>YEINEN</u>						

Log of Boring RHMW11

Sheet 18 of 32

			I	ROC	кс	ORE				tic	S	AMPLE	s		
Elevation, feet	bepth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schema	Type	Nurriber Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
	270	54	28	100		44			- ¥ [—] 30-40% vesicles 0.5-2mm, dark reddish brown - (5YR 5/6) oxidation around fractures 4 and 5 - 4. 30, J, VN, Fe, Su, Ir, R - 5. 15, J, N, Fe, Su, Ir, R 						Good water circulation, no water loss
	271 - -						2		- grades without white clay in vesicles	hällällä	NUNUNU				
	272		29		-		M		- - - - - - ↓ - ↓0-50% vesicles up to 3mm	<u>rururur</u>			-	[30]	
	273-						₩ M			unununu	DEDEDEDEDE				
	275	55	200	100		0	IF		 yellowish red (5YR 5/6) highly weathered oxidized zone 1. 60, J, ?, Fe+Mn+Cl, Sp, Ir, R 2. 45, Sh, Fe+Mn+Cl, Fi, Pl, S-Slk 	<u>يا لا الما لا الماريا</u>					Good water circulation, no
	276 - -		30				2		- 	huhhhh	NUMUTIN				Water ioss
	277				_		NR M		yellowish red (5YR 5/6) to dark red (2.5YR 3/6) oxidized zone	A THAN THAT			-	[33]	
	278-		31						wery dark gray (5YR 3/1), moderately weathered, moderately strong, 25% vesicles 1-2mm, with occasional white and gray clay infilling vesicles	<u>whithithi</u>					
	280	56		90		10			 <u>BASALT Pahoehoe</u> Very dark gray (5YR 3/1), slightly weathered, strong, 15-25% vesicles, alternating zones of smaller (0.5-1mm) and larger (3-5mm) vesicles 1. 20, J, N, Fe+CI, Sp, St-Ir, VR 2. 5, J, T, No, No, Ir, R 2. 45, J, N, No, No, Ir, R 						Poor water
	281-						3 M M 4		- 3. 45, J, VN, PEHMITO, PI, II, R - 4. 5, J, T, Cl, Sp, Ir, SR - 5. 30, J, N, Cl, Pa, St, SR-VR - 6. 0, J, N, Cl, Sp, Ir, R -	<u> </u>	KINKINKINK				water loss ~150 gal
	282		32		_		5 6 M		- - 	Nahaha			0.0	[100]	
	283						M 1 2		- - 1. 20, J, VN, Fe+Mn+Cl, Pa, Ir, R - 2. 20, J, VN, Cl, Sp, Ir, R - 3. 30, J, N, Cl, Pa, St, R - 4. 30 J, VN, Cl, Sp, Ir-Pl, SR - 5 20 J, VN, Cl, Sp, Ir-Pl, SR	<u> </u>					
	284-						3 4 5		- 5. 20, 3, 1, 0, Fa, Fl, 31 - 6. 30, J, Cl, Sp, Wa, SR - -						Poor water circulation, water loss ~200 gal

Report: CT053 RED HILL WITH WELL AND PID; File: CT053 RED HILL CORE LOGS GPJ; 2/9/2018 RHMW11

Log of Boring RHMW11

Sheet 19 of 32

ſ				F	ROC	кс	ORE				ci t		SAM	PLE	s		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Wall Schams		Number	per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		200	57		70		30	6	M)	-							
		286						M M M									Lost water circulation, drill
		287-						Vaid		- Void/lava tube 							string drops from 286 ft to 287.5 ft
		288		33				~~~1		very dark gray (GLEY1 3/N), 15% vesicles 3-10mm, some infilled with white or gray clay				-	0.2	[75]	End of drilling 10/25/17; begin 10/26/17
		- 289- -						M		▼ 30-40% vesicles 1-5mm - 1. 0, J, W, Cl, Sp, Ir, R - 2. 45, J, MW, Cl, Sp, Ir-PI, R - 3. 60, J, N, Fe, Su, Ir-PI, R - 4. 90, J, VN, Cl, Sp, PI, SR	<u>distribuintant</u>						Depth to water stabilized at 192.11' bgs on 10/26/17
		290	58	34	100		26	~~M		- → moderately weathered alteration/oxidation zone, strong, 30 to 40% vesicles 0.5-3mm							No water circulation for the remainder
		291 -								5. 80, J, T, Cl, Pa, Pl, SR 6. 45, J, ?, Cl, Sp, Wa, R		<u>Nununu</u>					of boring, Water loss ~400 gal
		292										NUMER					
IMW11		293						M M M M		✓ residual soil, clay (CH), highly weathered ✓ moderately weathered alteration/oxidation zone, ✓ moderately strong, 40% vesicles 0.5-1mm				-	0.0	[60]	
J; 2/9/2018 RH		- 294 - -		35				M M M 2		Finderately of only in a version of the final of the second of the final of the second of the final of the second of the s	<u>ku ku ku ku k</u>						
RE LOGS.GI		295	59		100		32										Water loss ~450 gal
RED HILL COF		- 296 - -						7 M		v → vesicles grade to 1-3mm 6. 20, N, Fe+Mn, Su, Sp, SR 7. 60, T, No, No, PI, R - vesicles grade to 0.5-1mm	<u>u¦:u:'u':u':</u> *	L'IL'LL'LL'LL					
ile: CTO53 I		297		26				M 9 M		_ 8. 45, VN, Ňo, No, St, R _ 9. 60, ?, No, No, Ir, R _ ↓ _ vesicles grade to 1-3mm							
AND PID; F		298		50				× F		- - moderately weathered, weak to strong, 50% - vesicles 0.5-1mm with pale brown (2.5Y 7/4) and white (8.5(N) clay infill very dark gray (CI EY1 3/N) pale		TANAL			0.0	[60]	
WITH WELL		299 - 								brown (2.5Y 7/4) and white (8.5/N) clay on fracture surfaces 		THINK DENT					
053 RED HILL		300 - 	60	27	100		42	1 2 3 M		² - 101111 1. 70, J, N, Cl, Sp, Ir, R - 2. 20, J, N, Cl, Pa, Pl, SR - 3. 90, J, VN, Fe+Mn+Cl, Sp, Ir, R - 4. 15, J, N, Cl, Fi, Ir, SR - 5. 5, J, N, Cl, Fi, Pl, SR							Water loss ~400 gal
Report: CT		301		51				M		6. 5, J, VN, Cl, Sp, Ir, R	HI.						

Log of Boring RHMW11

Sheet 20 of 32

ſ				F	ROC	K CO	ORE					atic	SA	MPLE	S		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION			Type Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		302		37				4 5 6			<u> «المشامينا منامينا م</u>						
		303 - -								- v—very dark gray (GLEY1 3/N), 30-40% vesicles 2-5mm v—becomes brown (7.5YR 4/4), moderately weathered, weak to moderately strong 1. 50, J, Uk, Su, Ir-PI, R	كدلكذلكذلكم				0.0	[60]	
		304						4			<u>urdrubru</u>						Water loss ~400 gal
		305 -	61	38	100		32	5 M M		- 4. 45, J, N, Cl, Sp, Pl, R [−] 5. 0, J, N, No, No, Ir, VR [−] 6. 5, J, T, Fe+Mn+Cl, Sp, Ir, R ₄ → slightly weathered, strong	the distribution						
		306						M 6 7		- 	<u>بدلاید لاید</u> لد						
		307						9		9. 20, J, 1, Fe+Mn, Su, Fr, SK 9. 20, J, VN, Fe+Mn, Su, Ir, R ∳ oxidized yellowish red (5YR 4/6 to 5YR 5/8), moderately weathered, moderately strong, with pale brown and white clay infill in vesicles	******				0.0	[75]	
/11		308 -		20				2		1.0, J, MW, CI, Pa, Ir 2.0, J, N, Fe+Mn+CI, Su-Sp, Ir, VR 3.10, J, VN-MW, Fe+Mn+CI, Pa, Ir, VR 4.0, J, MW, Fe+Mn+CI, Fi, Ir, VR 5.10, J, MW, CI+Mn, Sp, Ir, R 6.30, J, VN, UK, Su, PI, Slk		NY NY WINY					
3/2018 RHMW		303 - - 310-	62	39	100		36	3 4 5 6		v very dark gray (GLEY1 3/N) slightly weathered, strong	ملايلايلايلا	NEWENEN					Weterland
OGS.GPJ; 2/9		311						—М М		 ✓ oxidized yellowish red (5YR 4/5 to 5YR 5/8), completely weathered, extremely weak ✓ highly weathered, very weak to weak 	hild distant	8 17444174444					~350 gal
HILL CORE L		312 -								very dark gray (GLEY1 3/N), slightly weathered, strong, 25-40% vesicles 2-5mm 7. 15, J, T, No, No, PI, R	مثلكثليثل						
File: CT053 RED		313-		40				M		- - 1. 5, J, VN, CI, Sp, Ir, R - 2. 0, J, N, Fe+Mn, Su, PI, SR - 3. 5-10, J, MW, Mn+CI, Sp, PI, R - 4. 0-45, J, VN, No, No, PI, R	<u>tribribibibi</u>				0.0	[60]	
-L AND PID;		314						м М		dark reddish brown (2.5YR 2.5/4) to yellowish red (5YR 4/6), highly weathered, weak, 0.1 ft zone of residual soil at 314.2 ft ▼ very dark gray (GLEY1 3/N), slightly weathered,	<u>urdruh</u>						
IILL WITH WEI		315 -	63		100		62	3		strong, 40% vesicles 0.5-2mm ↓ fresh, strong, 40% vesicles 1-3mm 5. 0, SH, MW, Uk, Su, Ir, Slk 6. 70, SH, MW, Uk, Su, Wa, Slk	<u>xibibibibi</u>	KINKINKINKI					Water loss ~450 gal
CT053 RED H		316 - -		41						weathered weathered		TUDED CUDE					
Report:		317						\vee		weathered, strong, 25-30% Vesicles 0.5-10mm	B	IB					

Log of Boring RHMW11

Sheet 21 of 32

Log of Boring RHMW11

Sheet 22 of 32

Report: CTO53 RED HILL WITH WELL AND PID; File: CTO53 RED HILL CORE LOGS.GPJ; 2/9/2018 RHMM1

Log of Boring RHMW11

Sheet 23 of 32

Log of Boring RHMW11

Sheet 24 of 32

Log of Boring RHMW11

Sheet 25 of 32

				F	ROC	кс	ORE				itic		SAMPL	ES		
	Elevation, feet	E Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schema	Tvpe	Number Blows	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		382-						EE IF		- w dusky red (10R 3/4), moderately weathered, weak - w becomes dark gray (5YR 4/1), slightly weathered,	ul distand					
		383		61						_ strong, 40-50% vesicles 1-3mm _ 1. 90, J, T, Cl, Sp, Wa, R 	<u>u du du du</u>			0.0	[100]	
		384 - 						M		- → vesicles increase to 3-5mm -	₩ ®					
		385 - 	77		100		92	2		- - 2. M?, 45, J, VN, No, No, St, R - 3. 30, J, VN, Fe+Mn, Su, Ir, R	<u>kukukuk</u>	<u>Ununun</u>				Water loss ~450 gal
		386 - - -		62						- 	<u>shtututu</u>					
		387						1 M		- 	<u>uhuhuhuh</u>			0.0	[75]	
11		388 -						/ °		– - 1. - 2. 5, J, MW?, Fe, Su, Ir, R - 3. 20, J, MW?, Fe, Su, Ir, R - 4. 45, J, T, No, No, Wa, R - 4. 45, J, T, No, No, Wa, R		<u> </u>				
9/2018 RHMW		309 - - - 390 -	78	63	100		52			– 6. 30, J. N. No, No, Wa, R - 7. 85, J, N. No, No, Wa, R - 8. 30, J, N. MW, No, No, PI, R - 8. 30, J, N, No, No, Wa, R - 9. 0, J, T, No, No, PI, R –		KINKIPKINKIN				Water loss
-0GS.GPJ; 2/9		- - 391 -						5 6 M 7 8		- - - - - -	and a distation					~350 gal
ED HILL CORE I		- 392 -								- - - - ↓ - ↓ - ↓ - ↓ hrownish vellow (10YR 6/6) alteration zone	<u>نامنامنامن</u>					
File: CTO53 RE		393 - 												0.0	[37.5]	
ELL AND PID;		394 - -		64						ho recovery	1 th the the					
HILL WITH WE		395 - -	79		50		8	-		 <u>BASALT a'a Clinker</u> <u>BASALT a'a Clinker</u> Variably colored dark reddish brown (2.5YR 3/3), yellowish red (5YR 4/6), weak red (2.5YR 4/2),very dark gray (5YR 3/1), gray (7.5YR 5/1), 0.5-2" angular 						Water loss ~500 gal for first 4 feet, ~100 gal for lost 1 for
t: CTO53 RED		396						1		 fragments with 30-50% vesicles 1-3mm in diameter, spherical and lenticular vesicles 1. 20, J, MW, Mn, Su, Wa, SR 	<u></u>	<u>Nurunu</u>				ιασι Ι ΙΟΟΙ
Repor		39/-						· · ·								

Log of Boring RHMW11

Sheet 26 of 32

2/9/2018 CT053 RED HILL CORE LOGS.GPJ; File: (RED HILL WITH WELL AND PID; CT053

Log of Boring RHMW11

Sheet 27 of 32

ſ				F	ROC	кс	ORE				; ;	IIC	SAM	PLE	s		
	Elevation, feet	F Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION		well ocnema	Number Number	per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		414						NR		no recovery	<u>antanananan</u>						10/30/17
		415	83	69	52		8	TF		dusky red (10R 3/2) and dark gray (GLEY1 4/N), moderately to highly weathered, strong to moderately strong, sub-angular to sub-rounded fragments 1/4" to	<u>ututututututututututututututututututut</u>	1. W.					Water loss ~550 gal
		416									<u>diatribent</u>						
		417 -						L IF		-							
		418- -		70				1 مر		BASALT Massive a'a Dark gray (GLEY1 4/N), fresh to slightly weathered, strong, 15% lenticular vesicles 1-10 mm	<u>hindridiana</u>				0.0	[50]	
		419-						32		-							
		420 - - -	84		100		80		(-	للشلاطيط						Water loss ~500 gal
8 RHMW11		421		71					(***** (***** (***** (***** (***** (***** (***** (*****	- 	<u>distriction</u>						
2/9/2018		422							(***** (***** (***** (****** (******	-	*17*17*	KINKINK.					
RE LOGS.GPJ;		423						1	* *	no recovery 1. 70, J, VN, Fe+Mn, Su, Wa, R 2. 60, J, VN, Fe+Mn, Su, Wa, SR 3. 5. J, VN, Fe+Mn, Su, JR, R	unununu	DEDEDEDEDEDE		-	0.0	[27.3]	
HILL CO		424		72				<u>-</u> ~м		- 4. 5, J, VN, Fe+Mn, Su, Ir, R -							
File: CTO53 RED		425 - -	85		96		70	M M		-	<u>that the state of the state of</u>	8 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17 1: 17					Water loss ~750 gal
ND PID;		426						IF.		-	N::DE:ID						
WITH WELL A		427		73				4		- - - -	<u>distulation</u>						
TO53 RED HILL		428								1. 70, J, VN, Fe+Mn, Su, Wa, SR-R 2. 0, J, N, No, No, Ir, R ↓ grades with weak red (10R 4/4) mottling, moderately weathered	<u>kinkinkink</u>	<u>KINKINKIN</u>			0.0	[25]	
eport: C1		429						↓ Ţ		BASALT a'a Clinker	111	1 I I I I I I I I I I I I I I I I I I I					

Log of Boring RHMW11

Sheet 28 of 32

ſ				F	ROC	кс	ORE					itic	S	AMPLE	s		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION		Well Schema	Type	Number Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		430	86	73	32		12	10		 Weak red (10R 4/4) with dark gray (GLEY1 4/N) mottling, moderately to highly weathered, strong, sub-angular fragments 1/4" to 3" 							Water loss ~1000 gal
		431						NK		no recovery	אלואליואניואניו	NY NY NY NY NY					
		432									And the desides of the second s					(50)	
		433								BASALT Pahoehoe Very dark greenish gray (GLEY1 3/3), slightly weathered, strong, 25-30% vesicles 1-20mm					0.0	[50]	
		434		74				23		- 1. 90, J, W, Fe+Nn+O, Su-Sp, Pl, R - 2. 5, J, MW, Fe+Mn, Su, IR, R - √ 30% vesicles 1-3mm with occasional 20mm - 3. 5, J, MW, Fe+Mn, Su, IR, R - 4. 5, J, MW, Fe+Mn, Su, Ir-Pl, R - 5, IF, J 2 Fe+Mn, SU, Ir R	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
		435 - - -	87		100		46	4		- - - - 	<u>distrikti</u>	מיתיתית					Water loss ~500 gal
		436						IF TF		weathered, weak to moderately strong, 40% vesicles	antanta a						
3 RHMW11		437-		75						_ y becomes very dark greenish grav (GLE 1 3/3), _ slightly weathered, strong, 30% vesicles 1-3mm -	hababab	חייחייח			0.0	[50]	
J; 2/9/2018		438								- 	ALL ALL				0.0	[00]	
RE LOGS.GF		439								 patches, moderately weathered, moderately strong to strong, 40% vesicles 1-3mm 1.70, J, T, No, No, PI, R 2.45, J, VN, No, No, Wa, R 3. IF 2 Fe+Mn Su, Ir R 	Tribunt						
RED HILL CO		440	88	76	100		22			- 4. 70, VN, Fe+Mn, Su, Wa, Pl, R - 5. 20-45, J, VN, Fe+Mn, Su, Wa, R - 6. 45, J, VN, Fe+Mn, Su, Wa, R -	helper the second s						Water loss ~600 gal
File: CTO53		441 -						м 5		- 							
L AND PID;		442						M		 Very dark greenish gray (GLEY1 3/3) with dark reddish brown (2.5YR 3/3) oxidation, moderately weathered, moderately strong to strong, 25% vesicles 3-10mm, most lenticular 	<u>xiltikulti</u>	YULYULYULY					
L WITH WELL		443-								 Decomes dark gray (GLEY1 4/4), slightly weathered, strong, 25% lenticular vesicles 3-10 mm 1. 90, J, N?, Fe+Mn, Su, IR, R (IF along joint) 2. 45. J, MW?, Fe+Mn, Su, IR, R (IF along joint) 3. 	איאיאיאיי				0.0	[37.5]	
153 RED HILL		444		77				5 M		- 4. 70, J, MW, Fe+Mn, Su, Wa, R - 5. 10, J, VN, Cl, Pa, Ir, R - ず──10-15% vesicles, most spherical		ימיימיימיי					Water loss ~700 gal
eport: CTC		445								6. 30, J, N, Fe+Mn, Su, Ir, R	<u>utid</u>						

Log of Boring RHMW11

Sheet 29 of 32

ſ				F	ROC	кс	ORE					itic	S	AMPI	ES.		
	Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	RQD, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION		Well Schema	Type	Number Blows	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
			89		100		56	6 7		7. 70, J, N, Fe+Mn+Cl, Pa, Pl, SR	11:11:						
		446		77				8 9		20% reflection vesicles 2-3/min 8.60, J, MW?, No, No, Wa, R (IF along fracture)	11:11:						
		-						10		9. 60, J, MW?, No, No, Wa, R (IF along fracture) 10. 45, J, VN, No, No, PI, R	11111						
		447 -								_	NY:NY:	DY DY					
		440		70						- -	N KIN KI				0.0	[37.5]	
		440		78						- 1. 45, J, N, No, No, Wa, R	עיוריך						
		449-						3		[−] 2. 50, J, VN, Fe+Mn, Su, St, R [−] 3. 60, J, VN, Fe+Mn, Su, Wa, R [−] 4. 70, J, VN-N, Fe+Mn, Su, Wa, R		141141					
		-						M		-	11111						
		450	90		100		50			-	1 state						Water loss
		-						4 M		- ↓ becomes 25% vesicles 2-20mm		N'IN'N					~700 gai
		451 -		79				F	Ř	BASALT a'a Clinker Very dark gray (GLEY1 3/N), moderately to highly		NIN NIN					
		452-						LF		 weathered, weak to moderately strong, sub-angular to angular, coarse sand (2.5") size fragments 		N'N'					
						-		J.		-							
1W11		453 -						NR		ho recovery	illilli				0.0	[21.4]	
8 RHN		-						M		BASALT Massive a'a Very dark gray (GLEY1 3/N), slightly to moderately worthored strang 20% longing to vocide 1 5mm							
2/9/201		454 -						IF		w becomes red (10R 4/6), moderately weathered, moderately strong to strong, 25% vesicles 1-10mm	Think:	17:17:					
S.GPJ;		-								1. flow contact - 2. 20, J, VN, Fe+Mn, Su, PI, SR	<u>htht</u>	DY DY					
E LOG		455-	91		86		20	IF			D ELLE	NY NY					Water loss ~1100 gal
LL COR		456-		80						weathered, strong, 25% lenticualr vesicles 1-10mm	Drillin Drillin						
RED HI		-						К М		-	Triller's	11111					
CT053		457 -						23		-	Lillin	11111					
; File:		-						61 M		- 1. 90, J, VN, Fe+Mn, Su, Wa, R		1XID XID			0.0	[37.5]	
AND PIC		458 -						$-\frac{1}{2}$		2. 0, J, VN, Fe+INI, Su, IF, R ⁻ 3. 0, J, MW, Fe+Mn, Su, Ir, R ⁻ 4. 20, J, T, Fe+Mn, Su, Ir, R		N'IN'IN					
WELL /		450						M		_ 5. 20, J, VN-MW, Fe+Mn, Su, Ir, R -	<u>Libit</u>						
L WITH		459		81						-	LALL L	8 11/1/1/					
RED HIL		460	92		100		48	5		-	<u>thitti</u>						Water loss
CT053 F		-						6 M		- 7. 90, J, VN, Fe+Mn, Su, PI-Ir, R -	<u>thitti</u>	11111					~700 gal
Report: C		461						T 7	*******	-	Ħ						

Log of Boring RHMW11

Sheet 30 of 32

			F	ROC	K C	ORE				tic	SA	MPLE	S		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schema	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
	461						M 8 M 9 M		8. 70, J, VN, Fe+Mn, Su, Pl, SR-S 9. 20, J, VN, Fe+Mn, Su, Pl, SR-S	<u>دىلىدىلىدىلىدى</u>					
	463						M		w becomes moderately weathered with dusky red (10R 3/3) mottling				0.0	[42.9]	End of drilling 10/30/17; begin 10/31/17
	464								 <u>BASALT a'a Clinker</u> Dusky red (10R 3/3) with very dark gray (GLEY1 3/N) mottling, highly to moderately weathered, strong, 1/4" to 1" subangular to angular fragments 						
	465 - - -	93	82	62		28	NR 1		BASALT Massive a'a Very dark gray (GLEY1 3/N) with dusky red (10R 3/3) mettling medicately worthered strong 25% lepticular	<u>that the second second</u>	N VI VI VI VI				Water loss ~700 gal
	466						<u>—</u> М				nununu				
	467 -				_		NR		- ho recovery - BASALT a'a Clinker Very dark gray (GLEX1 3/N) with dusky red (10R 3/3)				0.0	[27.3]	
	468		83					× × × × × × × × × × × × × × × × × × ×	Imotiling, moderately to highly weathered, strong, 1" Isubrounded fragments [1.30, J, N, Fe+Mn, Su, PI, SR-R [2.50, J, VN, Fe+Mn, Su, Ir, R PASAL T Massive a's						
	469	04		100		20	IF 3 M		Very dark gray (GLEY1 3/N) with dark reddish gray (5R 3/1) mottling, moderately weathered, strong, 25% lenticular vesicles 1-5mm — becomes dark gray (GLEY1 4/N), slightly						
	470	94		100		30	4 5 6 7 7 8		 Weathered, 15% lefticular vesicles 1-5mm 1. 30, J, N-MW, Fe+Mn, Su, Ir, VR 2. 80-90, MW, Fe+Mn, Su, Ir-Wa, VR 3. 70, J, VN, Fe+Mn, Su, PI-Wa, SR 4. 50, J, VN, Fe+Mn, Su, Ir, R 5. 45, J, VN, Fe+Mn, Su, Ir, R 6. 20, J, VN, Fe+Mn, Su, PI, SR 7. 70-90, J, MW-VN, Fe+Mn, Su, Wa, SR 	<u>مرا براید را براید را بر</u>					Water loss ~650 gal
	472-						M		8. 10, J, T, Fe, Su, Pl, SR	<u>uhuhuh</u>					
	473-		84				1		 mechanical break mechanical break S-20, J, N, Fe+Mn, Su, IR, VR (drusy void) 4. 60, J, T, Fe+Mn, Su, PI, SR-S mechanical break 	אילעאליאל	NIN SIN SIN SIN		-	[30]	
	474 - - -						2 2 3			<u>uthuthut</u> 9					
	475-	95		82		52	MA A		weight becomes dark gray (GLEY1 4/N) with dark reddish gray (5R 3/1) mottling 6. 90. J. N. Fe+Mn. Su⊒r_SR-S						Water loss ~650 gal
	476		85				10 5 6 7		7. 10, J, T, Fe+Mn, Su, Pl, St, SR-S		DEDEDED				
	477						NR		BASALT a'a Clinker	Ħ					

Report: CTO53 RED HILL WITH WELL AND PID; File: CTO53 RED HILL CORE LOGS. GPJ; 2/9/2018 RHMW11

Log of Boring RHMW11

Sheet 31 of 32

Report: CTO53 RED HILL WITH WELL AND PID; File: CTO53 RED HILL CORE LOGS.GPJ; 2/9/2018 RHMW'

Log of Boring RHMW11

Sheet 32 of 32

			ROCK CORE				ORE				Itic		SAM	IPLE	s		
	Elevation, feet	bepth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schema	Tvpe	Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
		493								Bottom of Boring; TD = 492.5 ft bgs	-						
		494								- Used a total of approximately 27,140 gallons of	- - - -						
		495 								 1/4" steel casing to 20 ft bgs. Drill with 8" O.D. HSA from 22.5 ft bgs to 50 ft bgs. HQ core from 50 ft bgs to 210 ft bgs. Hole reamed to 15 1/2 inches from 42.7-75 ft bgs. Installed 10" steel casing to 75 ft bgs. Hole reamed to 9 1/2" from 75-165 ft bgs. Installed 5" steel casing to 165 ft bgs. PQ core from 210 ft bgs to 492.5 	-						
		496 - - - 497 -								 ft bgs. Installed Westbay MP38 multi-level well with 8 isolated sampling zones. 	- - - -						
		498									-						
		- - 499 -									-						
		500 - 									- - - - -						
I8 RHMW11		501 - - -									-						
3.GPJ; 2/9/201		502									-						
-L CORE LOG		503 - - 															
CTO53 RED HI		505									- - - -						
AND PID; File:		506 									- - - - -						
-L WITH WELL		507															
TO53 RED HIL		508- 									-						
Report: C		509-															

Geophysical Investigation at RHSF

GEOPHYSICAL RECORD OF BOREHOLE: RHMWW11

AECOM

Project Number: 60481245

5				
SDD			Temperature	
011				
OHM Conductivi	1000 ty	11.5	DegC FCond	12.5
mS/m	300	700	uScm	900
	>			

Page 1

Depth Elevation	Caliper	Amplitude-NM	Image-NM	Tadpole Sh	ort Normal Resistivity	Gamma		SPR		Tei	nperature	
1in:2ft	3 inch	12.5 ^{0°} 90° 180° 270° 0	°0°90°180°270°0°0	90 300	OHMM 800 Self Potential	0 CPS	20 400	OHM Conductivity	1000 1	1.5	DegC FCond	12.5
				50 Lo	mV 250 ng Normal Resistivity	2	100	mS/m	300 7	700	uScm	900
	(100	OHMM 400							
176 54.0												
170 54.0						M						
- 178 - 52.0												
							_					
- 180 - 50.0						M						
- 182 - 48.0												
- 184 - 46.0												
					I	M						
- 186 - 44.0						M M						
- 188 - 42.0												
- 190 - 40.0	}	10000			>							

Depth	Elevation		Caliper		А	mplitude-NM	Λ		l	mage-NM			Tadpole	She	ort Normal Resi	stivity	Gamma	
1in:2ft	ŀ	3	inch	12.5 0°	90°	180°	270° 0°	°0°	90°	180°	270°	0° 0		90 300	OHMM	800	0 CPS	20 400
															Self Potential	I .		
														50	mV	250		100
														Loi	ng Normal Resis	stivity		
														100	ОНММ	400		
			1			Materie	R DAL	194	1.200	-	Sector Sector	No.		100		400	>	
									South and							_		
									THE STA	The state								
			\langle						Contra -		a mina	4						
100	20.0		\langle		S18 8 - 10	see. Mary	COLORIDA I	Empres		1011								
192 -	38.0			44.2%		- Parts	Martin Call	and the			ding diamin	103						
			{	and as	1.00	1. 19 A. P. 19		- WHEAT				8151						
				1 F 14	lighter pick	-120				1811		άšέ.						
					and in	States 1	ALC: NO.			10.00	111 186	184					5	
				and a	- 1997 (H	1.5/12	in a fam	Manak		ung t tr		A.C.						
- 194 -	36.0				William.			Marak				NBC -						
			\langle			356	CONC. STA					ndi set sa						
			\rightarrow	÷.,			1			ant o								
			5	515F ()		19.64				78 F 16		No.						
			(1.1	(*	101034		121 U		Sund.					8	
- 196 -	34.0		}			New York	Carlos Comp.					NY Y						
				1.2	1.11	10.22	6. A. C. S.					1055						
				1.10-	1000			1 Same			11	2.0						
			\rangle	Net 7	1	Sound Press	100	12114			1.1.1	13:55						
				100		See.	A	2.4		1993 6		1.27						
108	32.0			S. Cart		an an an	Cherner	18383			1 Barris	Sec.						
190	52.0		2	2.14	88 (B)	1999 (M		AUN			AND DO							
			5	744		- 6 C - 5 C - 5	<u> 11.275</u>	1.11		127 A		A. C.						
			ζ		1.20	1. 1. 1. 1. 1	1997 (Barris	153 14				14.2						
			\langle	1 Pager	** p+1	3 they		688.87			The Vit	1.25						
			5	1.57	1.00	The sease	alter (AV N			Martha Els	10.2						
200 -	30.0		5	1 1/10	181-		Sector Sector	1. 1 A .		· ale a		1. 2				/		
				distanti.	1 8 8.88		and the second	C Ba		1.1		The second						
			ζ	1.00		and the	A second				NE I	1385						
					1. O. O.	TIME		¥1		533 A 82		1000						
				19 A. 1	and the second	1.5	10 A A					6-51						
202 -	28.0				1.18			1.1000			3.3 148	111-21						
			\geq	- 46		1.578	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ANNA A			aller (1 32						
			5	6.50	11111		10 . S . S . S . S . S . S . S . S . S .			90N 10		1						
			{		1.1	di lani	1.00			1994年1月		8.1						
				$\sim m_{ m c}$	Same	1000	194	THE .		STREET, STREET, STR		The second se)		
204 -	26.0		(Weine Provide State		· 2				2.2.1					- A A A A A A A A A A A A A A A A A A A	
					See.	- States		STUDE -		and the		12 1						
				1000			99 - E	A 53 18		Seal of the	Cherle	an Sel					\leq	
					6	100 20	1.00	(- All			allo.	Nice						

Depth Elevation	Caliper	Amplitude-NM	Image-NM	Tadpole Sho	rt Normal Resisti	vity	Gamma	SPR		Temperature	
1in:2ft	3 inch	12.5 0° 90° 180° 270° 0	° 0° 90° 180° 270° 0° 0	90 300	OHMM	800 0	CPS 20 400	OHM	1000 11.5	DegC	12.5
					Self Potential			Conductivity		FCond	
				50	mV	250	100	mS/m	300 700	uScm	900
				Lor	g Normal Resistiv	vity					
			CONTRACTOR OF THE OWNER AND ADDRESS OF	100	OHMM	400					
206 24.0	<u>}</u>							<u> </u>		{	2
200 24.0						\leq					<u>}</u>
								ا ا			{
								7			\$ I
			Dettory country states with the				-	5			<u></u>
208 22.0			and the second se					({	<u>}</u>
							>	}		- E	5
						\leq)			5
								L L		s s	3
								۲			>
210 20.0							>				2
								5			7
			A State working a state of the state of the					\subseteq			<u>ر</u>
	\$							لم		l l l l l l l l l l l l l l l l l l l	<
212 18.0			Internet of the second second second								<u> </u>
) (Ş	3
	ζ	St. Ta sumitive and an									5
	>							}			ζ
							-				5
214 16.0											5
			The second second second second second							E E	1
		· · · · · · · · · · · · · · · · · · ·									E .
		The second s									\$
216 - 14.0											<u> </u>
			Harrison to Antonia							le la	- Z
							>	}			}
		and the second second second									5
										}	ξ
218 12.0		We want the second second second second second	And the second se							}	3
			A DECEMBER OF			\leq	>	{		<u>}</u>	\$
								}		}	}
			Lines, since a supervise state							E State Stat	۲ ا
220 10.0							-				2
	\geq						>			3	2

Depth	Elevation	Calipe	Amplitude-NM	Image-NM	Tadpole Shor	t Normal Resistivity	Gamma	SPR		Temperature	
1in:2ft		3 inch	12.5 0° 90° 180° 270° 0°	0° 90° 180° 270° 0° 0	90 300	OHMM 800 0	CPS 20 400	OHM	1000 11.5	DegC	12.5
						Self Potential		Conductivity		FCond	
					50	mV 250	100	mS/m	300 700	uScm	900
					Long	y Normal Resistivity					
					100	OHMM 400	-				
				The state of the s						<u>{</u>	
			The second sector se	State of the second				L L		\$5	
								۲		{ }	
- 222 -	8.0		the state of the s								
										\$	
			and the state of the							42	
										5 S	
- 224 -	6.0		STATISTICS AND ADDRESS OF ADDRESS								
				A DESCRIPTION OF THE OWNER OW						54	
			and the second	STATUTE OF TAXABLE PARTY.			~			1	
				No. of Concession, Name						32	
			and the second data and the second							5	
- 226 -	4.0		- The manufactor - man					<u>۲</u>			
			The second second second second second second					1			
								ς .			
			the second s							<u>)</u>	
222	2.0						3	(R	
228	2.0	5		and the second							
				the second second second second second						<u>{</u>	
				and the second se							
		5		A COMPANY OF THE OWNER OWNER OF THE OWNER OWNE						4	
- 230 -	-0.0	<u>}</u>	AND AN BRADE ST							&	
200	0.0		AND	The same of the second s							
								{		S	
			A DECEMBER OF								
										<u> </u>	
232 -	-2.0									<u>\$</u>	
			A CONTRACTOR OF	There are a mark of the local of the			F I	Γ.		<u> </u>	
							W	<u></u> Ч		k k	
		{		Contraction of the second s				{		K	
										<u> </u>	
234 -	-4.0	<u>}</u>					5			{	
			where the first strain of the first strain							9	
			An and the second se	and the second se						8	
										K	
			And the second second							<u> </u>	

Page 5
Depth	Elevation	Caliper		Amplitude-N	М		Image-NM	l		Tadpole	Sh	ort Normal Resis	stivity	Gamma	
1in:2ft		3 inch	12.5 0° 90°	180°	270° 0° 0°	90°	180°	270°	0° 0		90 300	OHMM	800	0 CPS	20 400
												Self Potential			
											50	mV	250		100
											La	ong Normal Resis	stivity		
											100	ОНММ	400		
236	-6.0		Sec. Sugar	- The Sette	And Street of Street	ALC DE L	CONTRACT.							5	
			1. A. A. A.	A			A COMPANY	COMPANY OF THE OWNER	Section 2.				Į		
				Personal Property in the local division of t	Contraction of the local division of the loc			WERT -						~	
			Million and	n Andrewski	ter berten ter fille	-18 <u>-11</u>	Contario	where the state							
			1. A. 1.	Number (.)		6.1544									
- 238 -	-8.0		1000	Same an										5	
							· Antonio	10.00							
				4.1.18	And the state of the second		12.30	and a clothe	- Sta					\leq	
				a de la companya de l	Status and Property lines			11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(\leq	
240 -	-10.0		19 Jack 19											\sum	
240	-10.0		日本 高速電電	法被法国	Station of the		AL TARTING	- ANT	15 M						
			the second	that in Low		EL Sol	H- CAR	· ALL	1						
			14 C	6. N. C. M.	West and the Part	The second	and the second	- smith	a tun						
				2-0-012		1	1 the second	and a state of a							
242	-12.0		S. C. M. C. Y		truit (ALT the State			and the	de la						
			A SHARE TO	1. Sec. 1	Colling and	Silk.	175. 19								
			A state of				ALL AND		STOLEN BE						
			196 mar 2 7 1	1.560.50	ALMAN AND	1-4-5	and the second		1-11/s						
			Sector 24		Coldina Longe Control		14 . 18	- man						\sim	
244	-14.0		Contraction of the	100 miles			and all	- The second							
			en Marketerer	N. 77	Server St. De	Warm 1	11 - TA - TA - TA	Trong of						\leq	
			C. Numer	1.00	BIN ALC: SY	States 1	-	- allow	C.						
				a series and	the second second		The state	The second second	alles de						
				W. C. Land	A 1997 1994	3 44		Anna Pris	and the second						
246	-16.0		- 14 A			1	A COLUMN TWO IS NOT	LETTER -	State of the second						
			the way of the		2 Jan -	1. 30	ALC: NO	Salar M	and the second						
		3	11000 80			E of t	- ANTINA	and the	-						
			States and states and												
249	19.0		Long Lot	Balliotes	 		Sector Barrier			\bullet					
240	-10.0	<pre> </pre>	S. S. State	1. S.			1 B	PAN	-						
			Statistics	A Parties	. WALLAND		12-2-14	2000	1 Barris						
				Statistics of the local division of the loca	A CONTRACTOR OF		COLUMN ST	Sec.	SHE						
			Sec. O.			CALL T	STATISTICS.	Married Street	-					\geq	
_ 250 -	-20.0		a diaman	Contraction of the		N. S. Dector		The states							
						ALL DOT	CALL LINES	The state of the state	D-MC						
			all area have			and a summer of the	NUT SE	C.	2					5	

Page 6

Depth	Elevation	Caliper		Amplitude-N	м		Image-NN	1	Tadpole	Sh	ort Normal Resis	stivity	Gamma		SPR	
1in:2ft		3 inch	12.5 0° 90)° 180°	270° 0° 0°	90°	180°	270° 0° 0		90 300	OHMM	800	0 CPS	20 400	OHM	1000
											Self Potential			L	Conductivity	
										50	mV	250		100	mS/m	300
										Lo	ng Normal Resis	stivity				
										100	OHMM	400				
			Sector 1	X. 1. W. M.	anter al	The state	PHILE !	A BARATS								
			Sec. 1.84	A		-	a will a	and the second second								$\langle \rangle$
- 252 -	-22.0			State 2	A CONTRACTOR OF		-0-0						5			
			- March		- 1 A	Contraction of	States									
			Sand Contract		A CONTRACTOR OF THE OWNER	Section and		a want i								\setminus
			. WWw.mister	decarl		12-1										
					Sector Sector Sector		Cart S	and the second second								
- 254 -	-24.0		C C C C C A C A C A C A C A C A C A C A			The state	N. P. SWEEK	A DE TRUN								
				10 B	A CONTRACTOR			and the second se					\leq			
			19 - P. C.	Abril de	Y 18 X	-	Provide Line of the	A CONTRACTOR OF TAXA								
			1. S.	S	1	- TRANSFORMER										
			343		a dhana 🖄	-	And a second									
- 256 -	-26.0		C Annual Concernance	<u></u>				Contra Land								
			× 20	1 - C - C - C - C - C - C - C - C - C -	201 (CE 2)	Sau Main	The shares	and the second second								
				a croster		Nor 2	-	A Charleston								
			CX 1953		Service and	Ren la	ALL ALLONG	Same -								
			2012/02/94	and Starting of		International	Ser Trai	- CARLEN MARK								
- 258 -	-28.0		18 A. A. A.		the second second	2 - 2										
					- A			The states					5			
			1. Sec. 1.	17. 18 Bach	- 1. THE		and an									
						Same in	and the second	Service and the service of the servi								
			piles"	Sec. Sec.	and the second			the set of								
- 260 -	-30.0		1111	ACCOUNTS OF		1	And Andrews	and The Dest								
				- CARGE TOW			-	Rabar To a sure								
			And the A	Sec. Ash	a with the	TIME		A STREET								
				Constant of the	Sec. 264	No. of Concession, Name										
							the Party								}	
- 262 -	-32.0		PAR MAN	-									2			
			C Careford States	536 A 4.	410 agente a g		State of the						5			
						the s	100						\geq			
			1.14.46.7			ALCON AL	CHAT BE SOLL									
				A Shirt and the	A DEPARTON			and in the set								
_ 264 _	-34.0			and the second		a 4	al and	- Alter and -								
				WC-1942A	E-CARGE		and the second	and a state of the								
			5	ARE FINAN		-	The second	A REAL PROPERTY AND A REAL PROPERTY AND A								
				States We	Warn Street and Street	Balling of	and the second	and the second second					\leq			
			State of the	1992 Mary	Valent and the second		r te mariner a	Ling Standard Lago and Shirt					S		L .	
- 266 -	-36.0		A STATE OF A		A REPORT OF A PARTY OF A	Ser Ser	THE LAS	The state of the state of the								

mma			SPR			Temperature	
PS	20	400	OHM Conductivity	1000	11.5	DegC FCond	12.5
		100	mS/m	300	700	uScm	900
						ş	
						~	
						\langle	
						\$	
						{	
						}	
						{	
						{	
						{	
						{	
						~ {	
						\ }	

1in:2ft 3 inch 12.5 0° 90° 180° 270° 0° 0° 90° 180° 270° 0° 0 90 300 OHMM 800 0 CPS 20 400 OHM 1000	11.5 DogC 12.5
	Deyc 12.0
Self Potential Conductivity	FCond
50 mV 250 100 mS/m 300	700 uScm 900
Long Normal Resistivity	
100 OHMM 400	
	↓
	λ λ
	53
	ι <u>Σ</u>
	ا ا
	21
	┃
	۱ <u>۲</u>

Depth	Elevation	Caliper			Amplitude-N	м	_	I	mage-NM			Tadpole		Sho	ort Normal Resis	tivity	Gamma	
1in:2ft	ŀ	3 inch 1	2.5 0°	90°	180°	270° 0)° 0°	90°	180°	270°	0° 0		90	300	OHMM Self Potential	800	0 CPS 20	400
														50	mV	250		100
														Lon	g Normal Resis	tivity		
			and the second				-							100	OHMM	400	ζ	
- 282 -	-52.0		100		Reserves.	A			1	in the second	Man Sherland						2	
202	02.0		£. #		1.1.1.1.1	16 C 10	in the	1 - Init	Zanto in a		and the second							
					201 <i>412</i> 65	1.000					5					/	5	
			196		istaariikst Karaaliis	i negerin	-			an a								
- 284 -	-54.0	<u> </u>			AN RE	<u> </u>			. Kingar	- That	大力主							
			a Ng	e syntae Verstaarse	en se spesor v Pada a vede	r an Albert	See. 1			- de colores							\leq	
		5	>		6.K 1974 5												\sum	
							-	1 2 2	Plas									
- 286 -	-56.0	5	-		10-			-	and the second	- Alice)			
			Hoga	1997) 1994 - Carlos Maria, 1997 - Carlos Maria, 199		The Second	1	-	in the second									
			Sec.	NICHTV:	Witten a	and the second second	-	R.A.		Tett	7(A.)							
				100	2.57	17 N.S.	-											
- 288 -	-58.0			Angle Color				- TOW	BE TANK	(1)》图1)								
			1		n an the			181		CONTRACTOR	AND							
					a -													
						Marke (A)		- Junitar	-									
- 290 -	-60.0		infe	and the second	an Color		4	100	in any first	den	5						5	
			- 20			1.00				Constant of the second	\sim							
			10	1.166		di cardidana	M an	and the same	Wall Le	- Interio and in	0.00						~	
					C) 22.	2.244.25	ALC: N	-	Surland in the		10-10- 20-0-0-0							
- 292 -	-62.0		and when	erro e car L'agent Maria		Section 1		1	The Straige		1 miles						3	
							100	-	in the second	2. 12 10 10	-							
			t = t	756	2006	h Nulinia												
				TT-VIEw-				and the	石町 20-15	Service and	-						A	
- 294 -	-64.0			1975 AN		and the second second			No. of the local data	- Million							\leq	
		\rangle				Park and the	100	Ann In B										>
			25	5.00	11 A B	2.745/26	-		Star Star	of the state	A CONTRACT							
			1.1	Contraction of the			-	in the second	San Barrie		Trans.						2	
296	-66.0	\leq	100	W. Lor		Sec. Sec.		1									M	

Depth	Elevation	Caliper	Amplitude-NM	Image-NM	Tadpole	Short Normal Res	sistivity	Gamma		SPR		Temperature	
1in:2ft	ſ	3 inch	12.5 0° 90° 180° 270° 0°	0° 90° 180° 270° 0° 0	90 3	00 OHMM	800 0	CPS	20 400	OHM	1000 11	.5 DegC	12.5
					⊢	Self Potentia	al		ļ	Conductivity		FCond	
					5	0 mV	250		100	mS/m	300 70	0 uScm	900
					F	Long Normal Res	istivity						
			The second se		1	00 OHMM	400	_					
								Г				{}	
												<u>ا</u>	
208	69.0											{ }	
230	-00.0		and the second sec									~ ~	
			Left the Bank and the Art States	A CONTRACT OF THE PARTY OF THE						ι		<u>}</u>	
			And a strate of the state of the strategy of the	The state Barbarra the state of the								<u>}</u>	{
			Construction of the State of th					~		1		· · · · · · · · · · · · · · · · · · ·	
- 300 -	-70.0						~	\geq		/		`	\$
			and the second	A A A A A A A A A A A A A A A A A A A						L L			
			The second s					~				<u> </u>	ξ
202	72.0							5				· · · · · · · · · · · · · · · · · · ·	}
- 302 -	-72.0									l		}	5
										1			{
			A CANADA CANA			(J		~ ~ ~	§
			A Contraction of the Contraction									<u>}</u>	ŧ.
- 304 -	-74.0		A REAL PROPERTY OF THE PARTY OF THE PARTY.									ද	\$
			and of the court of the local states and					5				· · · · · · · · · · · · · · · · · · ·	}
			A REAL PROPERTY AND A REAL				2			ſ		<u> </u>	ξ
							-	\leq				· · · · · · · · · · · · · · · · · · ·	
306	76.0							>				<u> </u>	•
- 300 -	-70.0											2	2
							-					<u>र</u>	\$
								>				<u> </u>	§
												5	Į –
- 308 -	-78.0						ž	>					
			And a state of the second				\leq					5	}
												2	ł
			Comparing the Company of the Company									2	ξ
310 -	-80.0		The Constant Stee Thready States										<u>}</u>
)	{
												۲. Element of the second se	٤
			Contraction of the second second second									< 1	}
							<						٤

Page 10

Depth	Elevation	I	Caliper		Amplitude-NM	Imag	e-NM	1	Tadpole		Short	Normal Resist	ivity	Gamma		SPR		Temperature	
1in:2ft		3	inch	12.5 0° 90°	180° 270° 0° 0°	90° 18	0° 270°	0° 0		90	300	OHMM	800 0	CPS	20 400	ОНМ	1000	11.5 DegC	12.5
												Self Potential				Conductivity		FCond	
											50	mV	250		100	mS/m	300	700 uScm	900
											Long	Normal Resisti	ivity						
											100	OHMM	400						
- 312 -	-82.0			A PART OF A PARTY										3					
																			•
					An international states in the states													<u>ک</u>	۶.
					A CANADA AND A CANADA AND A CANADA									<u>_</u>					Ş
				CTAL STRANGE	Contract of the second second									2		} 			}
- 314 -	-84.0			COLUMN THE PROPERTY OF	A CANCELLAR AN A DECEMPTOR									5				>	
																$\langle \rangle$)	5
				Contraction of the	STREET,								-			l l		ح ک	3
				The Sile of										3		· · · ·		· · · · · · · · · · · · · · · · · · ·	ද
					· 法国际 (15) 代达4 代表									\leq				k k	\$
- 316 -	-86.0			All and the second														5	ź
				10000										$\overline{\mathbf{x}}$				5	E I
				and a set of a second	新建筑和1000年6月21日									\leq					\$
					Solitor And College														\$
210	<u> </u>			1. S. S. M. M.														<u> </u>	\$
510	-00.0				his Receipter Standard The													<	\$
														\sim		{ {		<u>}</u>	E
				and the same of statute	A REAL PROPERTY AND A REAL PROPERTY AND A											<u> </u>		}	{
				T. C.	State of the second state of the											L L		5	\$ I
320	-90.0				(221-5) - Burn and Ada - 12 - Carl													<u>></u>	
				A Designation of the	CONTENT OF THE PARTY OF											{ ()	ξ
				and the second	Los 2 Constant and the second second													7	- E
				10000	States and Exception for the other											1)		}	٤
				The Section of a	and the Annual Print State States of								-			· · · · · ·		3	
322	-92.0				NOTION OF THE OWNER								_					ξ	
				States in the States	distant and the second second								_			r l			ł
				STATISTICS.	and the second second									\geq				5	
				and a second s	Contract Street over the second street of								_			J		<u>}</u>	\$
				Contraction of the second second	and the second second second									5				<u>></u>	`
324	-94.0			and a second second second second	Haractering a system of the														\$
				the strength and										5				}	- E
				den and the	A CONTRACT OF A CONTRACT OF											h h		5	}
				AND ADD THE A	A CONTRACTOR OF A CONTRACTOR OF A								<			l		5	5
200	00.0			a second as														<u>}</u>	ł
326	-96.0			and the second second	CONTRACTOR OF THE OWNER													l l	5
														A				5	5
				And the second second second second second							1	11						J	

Page 11

Depth	Elevation		Caliper			Amplitude-N	M			Image-NM				Tao	dpole		Sho	rt Normal Resis	tivity	Gamma	
1in:2ft		3	inch	12.5 0°	90°	180°	270°	0° 0°	90°	180°	270°	0° ()			90	300	OHMM	800	0 CPS 20	400
																		Self Potential			
																	50	mV	250	F	100
																	Lon	g Normal Resis	tivity		
																	100	OHMM	400		
				1 Share	Mass	-	and the second														
				Stat	Lind-M	State of State	MARTIN	1 Pall													
220	08.0			699 - 14	4,791	and the second															
320	-90.0					C. CARRENT	100403	84.84.												2	
					10	and the second second		- A													
			\rangle			軟化の名	An August	and they													
			(网络小学家	and the second second	WAR													
		1		£6.	14 H	- CARTER	Contraction of the													5	
- 330 -	-100.0			÷* 11	WW -							-									
				-	Witten-	1. S. C. S.															
				100	10.00	1. 1. 1. 1. 1.	A	and the second second													
				000	i an	2 HANDLE	and design the	ALL DIS													
				100	ad month	- Sector and	a start and a start of the														
- 332 -	-102.0		<u></u>			<u>en cha</u>	<u>CARDINAN A</u>														
			2		1.1		ACC ACLE AND	21.00													
				±(+ ;₩	13.60	000000000	Married House	2000													
				1	1. C		Dates - The	-													
			\mathbf{i}	and the	States of the	HOLD HAD BEEN	Expediation of	dine.													
_ 334 _	-104.0		\geq	100		A. 24 (1996) (1)	Section 2	1													
554	-104.0																				
					14-17-	the sugar	1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -														
				100	6.05	and stranger	- ALVION	C. 171-1													
			(100	WWWER, C		a ser l'action	NA A												Σ	
					And And	State of the second	-	a dia a													
— 336 —	-106.0		(11		THURSDAY	S. Maler														
				410.00	4.44	Windseat - Pr	S. V. Halland	100												\sim	
			2	المستورة		and the second	a state laws	1.10													
				_ 100	14-W/4		1	2.0													
						and the		1.00													
- 338 -	-108.0		\subset			-						-									
- 340 -	-110.0											-									
			(
_ 342 _	-112.0		>																	\sim	

Depth	Elevation		Caliper	_		Am	plitude-NN	Λ		•	Ima	age-NM			Tadpole	;	s	hort Normal Resisti	vity	Gam	ıma		SPR			Temperature	
1in:2ft		3	inch	12.5)° 9(90°	180°	270°	0°	0° 90°	,	180°	270°	0° 0			90 300	OHMM	800 0	CP	PS 20 40	00	OHM	1000	11.5	DegC	12.5
																		Self Potential					Conductivity			FCond	
																	50	mV	250		10	00	mS/m	300	700	uScm	900
																	L	ong Normal Resisti	vity								
																	100	ОНММ	400								
		(, ,																								{
																										ž	2
																											>
)																		\sim						\$	}
- 344 -	-114.0	$\langle \rangle$																									>
																							- λ			2	5
																										{	\$
																		V		\geq						{	<pre></pre>
- 346 -	-116.0																	\		3							ξ
	110.0																										<u>ا</u>
																											\$
																										}	ξ
																				2							Ş
- 348 -	-118.0	l)																								{
		5																								<u></u>	2
																				5							{
		<pre>></pre>																					}				{
		}																		2							}
- 350 -	-120.0																			3							}
																											₹
																											L I
																							1			}	5
- 352 -	-122.0																										
																											3
																										ł.	ς Ι
																			i /	>						•	$\boldsymbol{<}$
																							/ {				e l
- 354 -	-124.0	```	2																	\sim						<u>}</u>	
		c																	-	\leq		(\$	{
		ſ	>																	2						}	}
																				~	-					l l l	}
356	_126.0																			\leq						{	>
550 -	-120.0																										2
																										\$.	
																				\leq						· · · · · · · · · · · · · · · · · · ·	
	-																			-						· · · · · · · · · · · · · · · · · · ·	_

Depth	Elevation		Caliper		Amplitud	le-NM			Image-NN	Λ		Тас	dpole		Short Normal Resis	tivity	Gamma		SPR		Temperature	
1in:2ft		3	inch	12.5 0° 9	90° 180	° 270°	0° 0°	90°	180°	270°	0° 0			90 300	OHMM	800 0	CPS	20 400	OHM	1000 11.5	DegC	12.5
															Self Potential				Conductivity		FCond	
														50	mV	250		100	mS/m	300 700	uScm	900
														<u> </u>	Long Normal Resis	tivity						
			1											100	OHMM	400	_					
																	5				· · · · · · · · · · · · · · · · · · ·	
358	-128.0															5						
																					<pre>{ }</pre>	
																-	\leq				<u> </u>	
																			<u>ک</u>		<u></u>	
																<					52	
- 360	-130.0																					
																-					<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>	
																					\$ {	
																-					§ }	
																					· · · · · · · · · · · · · · · · · · ·	
- 362 -	-132.0																~~~~					
																					{ } / / /	
																					· · · · · · · · · · · · · · · · · · ·	
																					35	
264	124.0															-	\geq				· · · · · · · · · · · · · · · · · · ·	
- 304	-134.0																\leq					
																					5	
																	53				· · · · · · · · · · · · · · · · · · ·	
																					↓ (
- 366 -	-136.0																\leq		<u> </u>			
)																			
		(
																					<u> </u>	
			\rangle														~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
368	-138.0																					
																					· · · · · · · · · · · · · · · · · · ·	
																					43	
																-			{			
																	3				······ }<	
- 370	-140.0															<					} 	
																-						
																					{}	
																-					<u>}</u> {	
- 372	-142.0														/							
																	\geq				\	

Depth	Elevation	1	Caliper		Amplitude-NM		Ir	mage-NM			Tadpo	ole		Short Normal Resi	stivity	Gamma		SPR		Temperatu	re
1in:2ft		3	inch	12.5 0° 90	0° 180° 270	° 0° 0°	90°	180°	270°	0° 0			90 30	OHMM	800 0	CPS	20 400	OHM	1000 11.	.5 DegC	12.5
														Self Potentia	I ,			Conductivity		FCond	
													50	mV	250		100	mS/m	300 700	0 uScm	900
														Long Normal Resi	stivity						
													10	ОНММ	400						
																				<u> </u>	>
																				{	(
																3				5	
374 -	-144.0													\							}
														()		~					
														//							>
															5						ξ.
														1						ę.	λ I
376 -	-146.0														_	5					5
	110.0																			¥	
																				3	>
) (>
															2						Į
378 -	-148.0														-						Ş
	110.0														<						5
																				<u> </u>	
															<	\leq				K	
																				<u> </u>	
- 380 -	-150.0															\sim					
																				۲. The second	
															<					5	
																				5	
																				[]	
- 382 -	-152.0													(}	
																					>
																				\$	
																				Sec. Sec.	
- 384 -	-154.0																			X	
																				۲ د	
																				<u>8</u>	
																				3	>
																A				7	
- 386 -	-156.0															2				¥	
																5				<u>x</u>	
																				8	
																\leq					
																				X	

SPR		Temperature	
OHM 1000 Conductivity	11.5	DegC FCond	12.5
mS/m 300	700	uScm	900
		and the second se	
		Ş	

SPR			Temperature	
OHM	1000	11.5	DegC	12.5
Conductivity			FCond	
mS/m	300	700	uScm	900
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			<b>≯</b>	
			{	
			दु	
			ž	





SPR		Temperature	
OHM	1000 11.5	DegC	12.5
Conductivity		FCond	
mS/m	300 700	uScm	900
		ž	
		Z	
		}	
		<pre></pre>	
		{ \	



SPR		Temperature	
OHM	1000 11.5	DegC	12.5
Conductivity		FCond	
mS/m	300 700	uScm	900
		{	
		5	



Depth	Elevation		Caliper			Amplitude-N	M			Image-NN	N		Tadpole		Shor	t Normal Resistivi	ty	Gamma		SPR			Temperature	
1in:2ft		3	inch	12.5 0°	90°	180°	270°	0° 0°	90°	180°	270°	0° (	0	90 3	00	OHMM Self Potential	800 (	0 CPS	20 400	OHM Conductivity	1000	11.5	DegC	12.5
														- E		Sell Folential				Conductivity			FCOIlu	
														5	0	mV	250		100	mS/m	300	700	uScm	900
															Long	g Normal Resistivit	ty							
														1	00	OHMM	400							
480	250.0																-						ł	

Attachment E: Westbay System Summary of Model 0235 Packer Certification This page intentionally left blank

Westbay Instruments A Division of Nova Metrix Ground Monitoring (Canada) Limited. 8610 Glenlyon Parkway Unit 134 Bumaby, BC V5J 0B6



#### Summary of Model 0235 Packer Certification

Well No.: RHMW11

Westbay Project: WB970

Westbay Specification: WB-S-0201

Packer No. **	Westbay Casing No. **	Serial No: (0235 - xxx)	Valve Reseal (psi)	Valve Open (psi)	Manufacturing Date	Traceability Number
1	2	355	150	170	July 5, 2013	6057
2	7	356	150	175	Dec 16, 2014	6057
3	10	357	155	175	Dec 16, 2014	6288
4	16	351	155	175	July 5, 2013	6057
5	18	347	145	165	July 5, 2013	6057
6	21	348	145	165	July 5, 2013	6057
7	25	349	140	165	July 5, 2013	6057
8	29	352	145	165	July 5, 2013	6057
9	32	350	155	170	July 5, 2013	6057
10	34	354	140	165	July 5, 2013	6057
11	38	369	150	170	Dec 16, 2014	6288
12	41	374	150	165	Dec 16, 2014	6288
13	44	360	140	165	Dec 16, 2014	6288
14	47	371	140	170	Dec 16, 2014	6288
15	49	358	150	170	Dec 16, 2014	6288
16	57	375	150	165	Dec 16, 2014	6288
17	65	382	150	170	Dec 17, 2014	6288
18	73	359	155	175	Dec 16, 2014	6288

Signed:

ve barson.

Dave Larssen Technical Services Manager Westbay Instruments

This page intentionally left blank

Attachment F: Packer Inflation Records This page intentionally left blank

#### Sheet Lof (9 Westbay Packer Inflation Record

Project:	AECOM	Project No.: W	B970	Well No.: RHMW	V11
Location:	Red Hill	Completed by:	Mark Lessard	Date Inflated:	Nov 20/17
Packer No.	Blank Wall Test	Depth ( ft ):	480	Inflation Tool No.:	IFm 3197
Packer Val	ve Pressure, P _v : <u>n Le</u> psi F	Final Line Pressure, P _L :	900 psi	Tool Pressure, P1	: <b>500</b> psi
Borehole W	Vater Level: 193 (ft) =	85 psi (Pw)			

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = - n (a_psi)$ 

Volume, litres	0.25	0.5		 	[ _ ]		
Pressure, psi	620	900	_				-
Volume, litres					2		
Pressure, psi							



# Sheet 2 of 19 Westbay Packer Inflation Record

Project:	AECOM			Project No.: W	/B970	Well No.: RHMW11			
Location:	Red Hill			Completed by:	Mark Lessard	Date Inflated:	Nov 20/17		
Packer No.	1, como# 2	SN 35	5	Depth ( ft ):	469.5	Inflation Tool N	No .: TIN 3/97		
Packer Val	ve Pressure, Pv:	150 psi	Final L	ine Pressure, PL	700 psi	Tool Pressure	PT: 500 psi		
Borehole V	Vater Level: / 9	(ft)=	85	psi (P _w )					

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = 135$  psi

Volume, litres	1.0	2.0	2.5	3.0	7.5	4.0	4.5	5.0	5.5	5.6
Pressure, psi	580	620	630	630	630	630	630	630	660	700
Volume, litres	1	5.25		1	2.1					
Pressure, psi	/	Ø	34.3		1.000	e —			1	



## Sheet 3 of 19 Westbay Packer Inflation Record

Project:	AECOM			_	Project No.: W	/B970	Well No.: RHM	W11
Location:	Red Hill	1			Completed by:	Mark Lessard	Date Inflated:	Nov 20/17
Packer No.	& como	7	5NE 35	6	Depth ( ft ):	445.3	Inflation Tool No	: TEN 3197
Packer Val	ve Pressure	e, Pv: 1	50 psi	Final Li	ne Pressure, P _L	700 psi	Tool Pressure, F	T: Sco psi
Borehole V	Vater Level:	19	3 (ft)=	85	psi (P _w )			
				- · · · ·	10 1			

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = 135$  psi

Volume, litres	1.0	2.0	2.5	3.0	3.5	3,75	4.0	4.25	4.5	4,75
Pressure, psi	580	620	630	630	640	640	640	640	640	640
Volume, litres	5.0	5.25	5.35	5.5	5.6	5.65	/	5.25		
Pressure, psi	640	640	650	660	680	700	/	ø		



# Sheet 4 of 19 Westbay Packer Inflation Record

Project:	AECOM			Project No.: W	/B970	Well No.: RHMW11		
Location:	Red Hill			Completed by:	Mark Lessard	Date Inflated:	Nov 20/17	
Packer No.	3, comp 10	5N# 3	57	Depth ( ft ):	420.3	Inflation Tool N	10 .: TIW 3197	
Packer Val	ve Pressure, Pv:	155 psi	Final L	ine Pressure, PL	: 700 psi	Tool Pressure,	PT: 500 psi	
Borehole V	Vater Level: 1	93 (ft)	- 85	psi (P _w )				
				1			- 1	

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = (30 \text{ psi})$ 

Volume, litres	1.0	2.0	2.5	3.0	3.25	3.5	3.75	4.0	4.25	4.5
Pressure, psi	600	640	650	660	660	660	660	660	660	660
Volume, litres	4.75	5.0	5.25	5.4	5.5	5.6	1	5.25		
Pressure, psi	660	660	670	680	680	700	/	Ø		



# Sheet S of 19 Westbay Packer Inflation Record

8

Project:	AEC	DM		Ĺ.,			_					Proj	ect	t No	o.: 1	W	397	70			V	Vell	No	.: <u>R</u>	HN	ΛN	/11			
Location:	Red	Hill										Com	npl	eter	d by	1:	Ma	rk L	es	sarc	1_0	Date	In	late	d:	1	Voc	20/	17	
Packer No. Packer Val Borehole V	Vater L	ssur eve	re, F	2 ⊳v:	15	51	psi ft)	=	Fir 8	nal 5	Lin	Dep e Pr psi (	th res (P _v	(ft sur _N )	): e, F	۰ ۲:	31	<u>89.</u> 10	0	psi	_1	nflat Fool	Pr	Tod	ol N ure,	lo.: , Ρ ₁		500	3/9 0_1	9 psi
Volum	e, litres			0		20		2	S		3	n n	CK	er E	5	ier	3	7 -	Sur	e, F	E=		4	05	-	4	5	4	74	psi
Press	ure, ps		6	60	0	63	0	6	40		G	40	,	G	540	>	6	40	,	6	40	0	64	10	1	69	0	6	40	
Volum	ie, litres	1	5	.0	5	5.2	5	5	.4		S	.6		2	75	5	6	.0		6	25	(	6.	5	1	6	75	7	7.0	
Press	ure, ps		6	40	6	65	0	6	50	0	6	50	6	6	50		6	50	0	6	60		6	60	1	66	0	6	70	
Volume Prossure	/1:+ros ; ps:		6	7.2	4	7.3	5	F				7.0								1.1		1	T	1	1	Т	Т	T		
	E																									+	+	+		
760	-																			-								0		
sure (ps	, –																				90	00	e	0	0	6				
Pres	F				+	+		0						F						F				-	-		+	+		
600	-			•																					-					
	E					+							-														-	1		
	0			1				2				3	1	Vol	um	4 ne	(litı	re)		5			(	5			7			
Comment	ts: Pa	eke	u #	4	_		L	arg	ker	đ	tan	-et	er	:1	1	000	eh	ole	2	Ċ		2	Tir	ne -	1	9:5	534	m	_	_

Westbay.

## Sheet 6 of 19 Westbay Packer Inflation Record

Project:	AECOM			Project No.: W	B970	Well No.: RHMW	/11
Location:	Red Hill	2.1		Completed by:	Mark Lessard	Date Inflated: (	Nov De/17
Packer No.	5 comp 18	SNH	347	Depth ( ft ):	379.0	Inflation Tool No.:	TIN 3197
Packer Val	ve Pressure, Pv:_	145 psi	Final L	ine Pressure, PL:	670 psi	Tool Pressure, P ₁	: Jos psi
Borehole V	Vater Level: 19	3 (ft) =	. 85	psi (P _w )			
			Orlander	ad Dealers Flores			1

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = //g$  psi

Volume, litres	1.0	2.0	2.5	3.0	3.5	3.75	4.0	4.25	4.5	4.75
Pressure, psi	580	600	610	620	620	620	620	620	620	620
Volume, litres	5.0	5.25	5.5	5.75	5.9	/	5.7			· •
Pressure, psi	620	620	620	640	670	1	\$			



# Sheet 7 of 19 Westbay Packer Inflation Record

Project:	AECOM			Project No.: W	'B970	Well No.: RHM	W11
Location:	Red Hill			Completed by:	Mark Lessard	Date Inflated:	Nov 20/17
Packer No.	6,00021	SN# 34	8	Depth ( ft ):	367.0	Inflation Tool No	0.: 72w 3197
Packer Val	ve Pressure, P	145 psi	Final Lir	ne Pressure, PL:	GIO psi	Tool Pressure,	Pr: 500 psi
Borehole V	Vater Level:	193 (ft)=	85	psi (P _w )	• /•		

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = /(a)$  psi

Volume, litres	1.0	20	2,5	3.0	3.25	3.5	3.75	4.0	4.25	4.5
Pressure, psi	580	600	620	620	620	620	620	620	620	620
Volume, litres	4.75	5.0	5.25	5.5	5,75	6.0	6.1	6.2	1	5.85
Pressure, psi	620	620	620	620	620	640	640	670	/	ø



## Sheet g of (a Westbay Packer Inflation Record

Project:	AECOM				Project No.: W	B970	Well No.: RHM	1W11
Location:	Red Hill				Completed by:	Mark Lessard	Date Inflated:	Nou20/17
Packer No.	7. comp	25	5N# 3	149	Depth ( ft ):	342.8	Inflation Tool N	0.: TEW 3197
Packer Val	ve Pressule,	Pv: 190	o psi	Final L	ine Pressure, P _L :	GGO psi	Tool Pressure,	PT: 500 psi
Borehole V	Vater Level:	193	(ft) =	85	psi (P _w )			
				Calquilat	ad Dacker Elema	ot Dropouro D		100

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = (05 \text{ psi})$ 

Volume, litres	1.0	2.0	2.5	3.0	3.5	3.75	4.0	4.25	4.5	4,75
Pressure, psi	580	610	620	620	620	620	620	620	620	620
Volume, litres	5.0	5.25	5.5	5.6	5.75	5.85	6.0	1	5.75	
Pressure, psi	620	620	630	640	640	640	660	1	6	



#### Sheet Q of 19 Westbay Packer Inflation Record



Westbay.

Instruments

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = 100$  psi

Volume, litres	1.0	2.0	2.5	3.0	3.5	3.75	4.0	4.25	4.5	4.75
Pressure, psi	580	600	620	620	620	620	620	629	620	620
Volume, litres	5.0	5.25	5.5	5.75	6.0	1	5.75			
Pressure, psi	620	620	630	640	660	/	ø			



# Sheet (o_of leavest bay Packer Inflation Record

Project:	AECOM				Project No.: W	/B970	Well No.: RHN	1W11
Location:	Red Hill				Completed by:	Mark Lessard	Date Inflated:	Nov 20/17
Packer No.	9 comp	32	5~#	350	Depth ( ft ):	305.5	Inflation Tool N	0.: 7Iw 3197
Packer Val	ve Pressure	Pv: 15	5 psi	Final L	ine Pressure, PL:	660 psi	Tool Pressure,	PT: Jog psi
Borehole V	Vater Level:	193	( ft ) =	85	psi (P _w )			
		10.00		Calculate	ad Backer Elema	Procesure D		- A - mai

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = 90$  psi

Volume, litres	1.0	2.0	2.5	3.0	3.5	4.0	9,25	4.5	4.75	5.0
Pressure, psi	580	600	620	620	620	620	620	620	620	620
Volume, litres	5.25	5.5	5.75	6.0	6.1	1	5.8			
Pressure, psi	620	620	630	640	660	1	d			



# Sheet 11 of 19 Westbay Packer Inflation Record

Project:	AECOM	Project No.: WB970	Well No.: RHMW11
Location:	Red Hill	Completed by: Mark Lessard	Date Inflated: Nov 21/17
Packer No.	10, comp 34 SN# 354	Depth ( ft ): 290.3	Inflation Tool No .: TIW 3194
Packer Val	ve Pressure, Pv: (40 psi Final)	Line Pressure, PL: 660 psi	Tool Pressure, PT: 500 ps
Borehole W	/ater Level: <u>193</u> (ft) = <u>85</u>	psi (P _w )	

Westbay.

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = 105$  psi

Volume, litres	1.0	2.0	3.0	3.5	4.0	4.25	4.5	4.75	5.0	5.25
Pressure, psi	580	600	610	610	610	610	610	610	610	610
Volume, litres	5.5	5.75	6.0	6.25	1	6.0		1		
Pressure, psi	610	610	620	660	1	ø		1		



## Sheet 12 of 19 Westbay Packer Inflation Record



Project:	AECOM				Project No.: W	/B970	Well No.: RHMW11			
Location:	Red Hill				Completed by:	Mark Lessard	Date Inflated:	Novally		
Packer No.	11 comp	38	SNH	369	Depth ( ft ):	272.3	Inflation Tool N	10 .: TEN 3197		
Packer Val	ve Pressure,	Pv: 15	O psi	Final Li	ine Pressure, PL	660 psi	Tool Pressure,	PT: 500 psi		
Borehole W	Vater Level:	193	( ft ) =	85	psi (P _w )					

Calculated Packer Element Pressure,  $P_E = P_L + P_W - P_V - P_T = 95$  psi

Volume, litres	1.0	2.0	3.0	3.5	3.75	4.0	4.25	4.5	4,75	5.0
Pressure, psi	580	600	610	610	610	610	610	610	610	610
Volume, litres	5.25	5.5	5.75	6.0	6.25	6.35	6.5	6.6	/	6.25
Pressure, psi	610	610	610	610	620	640	640	660	/	Ø



#### Sheet 13 of 19 Westbay Packer Inflation Record



Westbay.
#### Sheet 14 of 19 Westbay Packer Inflation Record

Projec	ot:	AEC	CON	Λ	_	_					Proj	ect	t No	.: W	B9	70			w	ell N	lo.:	RH	M	N1	1		
Locati	ion:	Rec	Hil	Í.							Con	npl	eteo	i by:	Ma	rk Le	essa	ard	Da	te li	nflat	ted:		No	va	11	7
Packe	er No.	13,	CON	04	4	S.	VH	30	60		Dep	th	(ft	):	2	39	.8	2	Inf	Inflation Tool No .: TFu 3197							
Packe	er Val	ve Pr	essu	ire, F	Pv: 1	80	ps	i	Fina	d Lir	ne Pr	res	sur	e, P _L :	6	40	p	si	To	ol F	res	sure	e, P	T:	50	0	psi
Boreh	nole V	Vater	Leve	el: -	193	<u> </u>	(ft)	= .	8: Calcu	late	psi ( d Pa	(P _v	v) er E	leme	nt P	ress	ure,	Pe	= P	_+ F	w -	Pv	- Pī		8.	5	_psi
v	/olum	e, litre	es	1	-6	2	0	3	.0	3	3.5		4	.0	4	.5		5.	0	5	25	5	5.	5		5.;	75
F	Press	ure, p	si	5	70	6	00	6	20	6	20		6	20	6	20		6,	20	6	20		6	20	1	62	0
V	/olum	e, litr	es	6	6.0	6.0	75	6	5	4	7.75	5	7	.0	7	25	5	7.	5	Ŧ	.6		7.	75	-	/	-
F	Press	ure, p	osi	6	20	6	20	6	20	6	20	,	6	20	G	70	(	63	6	6	30	7	6	40	>	/	
P	ressu	e, 1:+	10)		4.4 Ø										_						_	_		_			_
		H					-	-		+					-	$\left  \right $	-	+	+	+					+	+	-
			-			$\square$		1		-																+	+
																	1										1
	toc			+		$\left  \right $	+	-		+	+				-	$\left  \right $	-	+	+	-	-			$ \rightarrow$	+	+	-
(isd						$\downarrow$		-		+	$\square$							1	-						-	+	
re (		-		+				1		t								1	-	t							
nss	650		-	+	$\left  \right $		+	-	$\square$	+	$\left  \right $		-		+			+	+	+	-				-		50
Pre				T		$\square$		1			6	-(	6	6		6	-0		0	6	60	20	2	50	X	4	2
	~			1				4				1.1	1			T			1	T	1		-			1	
	600	7		-		$\square$	+	4	H	Ŧ				$\square$	+				+	+	-	-	-			+	
				1	1	+	+			t					T					1						1	
					IY		-	-	$\square$			-	-	$\left  \right $	+	-		_		+	-	-	-		-	+	+
		(	)		1			2			3	,	Vol	4 ume	(lit	re)	5	5			6				7		
Com	nment	ts:	Pack	er	#13											_		_		т	ime	-	9	1:4	3.		

### _{Sheet} الج_{of} رو Westbay Packer Inflation Record

oject:	REC		-					-	^P	rojec	TINO.		Dal			- ***				viii		1-
cation:	Id		-	117		- 11	4 7	21		Depth (# ): 2/9 V												
cker Va	Un Pro	ON	P	YA	4	>/	1,	Fina	D	Pro	( 11 )	p	a	20	nei		ation	100	INO.	14	- va	1191
	Votori	55U	<b>c</b> , i	10	20	_ps		ac		n i /D	1	, ' L.	0	50	par	10	UTT	535U	10, 1	T0	00	_ ps
renoie v	vaterL	eve	-	14	3	(n)		2>	p		w)								-		7-	
							G	aicui	ated	Pack	er El	eme	n Pre	essur	e, P _E	= PL	+ P _W	1- P1	/- PT		75	ps
Volum	e, litres		1	1	1		2	1	4	~	11	-	1	-	6	2	-	~	-	-	6	1.5
		_	1.	0	a	0	2.	0	Т.	0	7.0	15	40	د	2.	0	3,	>	3.	75	6.	0
Press	ure, ps	i	5	70	6	00	60	0	60	to	6	ю	6	20	6:	10	G	20	6.	20	G	20
Volum	ne, litre	s	6.	25	6.	5	6.:	75	7	0	7.	25	7.	5	7.	75	8.	0	8.	25	8.	5
Pressure, psi		6	20	G	20	6	20	620		620		620		620		620		620		620		
Volum	e,lit	res	8.	75	4	1.0	9.	25	9	.5	٩.:	75	1	-	9.	3		-	-		-	
Pressu	e psi		G	20	4	520	6	20	6	30	6	30	1	-	ø	1						
	Ē	-		-	+		$\left\{ \right\}$	-	$\square$		$\left  \right $	-	$\left\{ + \right\}$	+	H		$\square$	-	$\left  \right $	-	$\mathbf{H}$	+
	F	1.11					11	+	11			1	$\square$		$\square$	1					$\square$	
	E							1	++		++					-	++	+				
700	F	-	H				$\left  \right $	+	$\square$	-	H	-	H		H	-	H	-				-
list	E	T					$\downarrow \uparrow$	1		1	$\square$	+				1				1		1
2	H	1						+	1		++	-	+	-		-		-				
650	F	1			Η	-	$\square$	-	Π	T	$\square$	-	H		$\left[ \right]$		H	T	Π			H
	- E						hos	4	000			nte	h	200							1	
		+	-	-			T	4	H	T	m	T	Ħ	-	+	-	+	+	-	-	+	++
600				1	19		11		$\square$				T	1				1			T	Π
					+		+	+	+		+		+	-	+	+		+	+			
			-						$\square$	T		-	$\square$	-	H				-			H
		-	1	-		2	-	5		-	2	-	0	1	*	V	-	r	13	r	1	IF
	0		1	2			4		(		Volu		Ø		6	н		12	. /	" 14	r '	.9
											VIII	ime	THEFE	- 1								

Westbay

## Westbay Packer Inflation Record

Project:	AECOM		_	Project No.: W	/B970	Well No.: RHM	/W11
Location:	Red Hill		-	Completed by:	Mark Lessard	Date Inflated:	Nov. 21/17
Packer No	15,0004	IQ SNH	358	Depth ( ft ):	204.5	Inflation Tool N	10 .: TIN 3197
Packer Val	ve Pressure, Pv	: 150 psi	Final L	ine Pressure, $P_L$	630 psi	Tool Pressure,	PT: 500 psi
Borehole V	Vater Level: [	'93 (ft)=	85	psi (P _w )			
	Contractor Sec		Calculat	ed Packer Eleme	nt Pressure, Pe	= P. + P P I	P-= 65 nei

Westbay.



#### Sheet 17 of 19 Westbay Packer Inflation Record

Project:	AECOM			Project No.: W	B970	Well No.: RHMW11					
Location:	Red Hill			Completed by:	Mark Lessard	Date Inflated:	Novally				
Packer No.	16 camp 5	7 SW#3	75	Depth ( ft ):	154.3	Inflation Tool N	No .: TIW 3197				
Packer Val	lve Pressure, P	: 150 psi	Final Li	ine Pressure, PL:	670 psi	Tool Pressure,	PT: Soo psi				
Borchole V Packe	v <del>ater Love</del> l: r depth	154 (ft) =	65 Calculate	_psi (P _w ) ed Packer Eleme	nt Pressure, P _E	= P _L + P _W - P _V -	P _τ = <b>\$7.5</b> psi				

Westbay.

Volume, litres	1.0	2.0	2.5	3.0	3.25	3.5	3.75	4.0	4.25	4.5
Pressure, psi	580	610	620	620	620	620	620	620	620	620
Volume, litres	4.75	5.0	5.25	5.5	5.75	6.0	6.25	1	6.0	
Pressure, psi	620	620	620	620	620	630	670	/	Ø	



#### Sheet 18 of 19 Westbay Packer Inflation Record

Project:	AECOM		94.3	Project No.: W	/B970	Well No.: RHM	/W11
Location:	Red Hill			Completed by:	Mark Lessard	Date Inflated:	Nov 21/17
Packer No.	17,000 65	SNH	382	Depth ( ft ):	79.3	Inflation Tool N	10 .: TEN 3195
Packer Val	ve Pressure, Pv: 1	To psi	Final L	ine Pressure, PL:	700 psi	Tool Pressure,	PT: 500 psi
Borehole V Packer	Vater Level: 79 Depth	(ft) =	35 Calculate	_psi (P _w ) ed Packer Eleme	nt Pressure, P _E	= P _L + P _W - P _V - I	P _T = . <b>85</b> psi

Westbay.

Volume, litres	1.0	2.0	a.5	3.0	3.25	3.5	3.75	4.0	4.25	4.5
Pressure, psi	620	640	650	650	660	660	660	660	660	660
Volume, litres	4.75	5.0	5.25	5.5	5.75	6.0	6.1	1	5.75	
Pressure, psi	660	660	660	660	660	680	700	1	ø	



# Westbay Packer Inflation Record

Project:	AECOM		_	Project No.: W	/B970	Well No.: RHM	1W11
Location:	Red Hill			Completed by:	Mark Lessard	Date Inflated:	Nova1/17
Packer No.	18, comp 73	SNH	359	Depth ( ft ):	4.3	Inflation Tool N	10.: TIN 3195
Packer Val	ve Pressure, Pv: (5	5 psi	Final L	ine Pressure, $P_L$	740 psi	Tool Pressure,	PT: Jou psi
Borehole V Packer	Vator Lovel: <u>4</u> Depth	(ft) =	· 0 Calculate	_psi (P _w ) ed Packer Eleme	ent Pressure, P _E	= P _L + P _W - P _V - 1	P _T = <b>8</b> 5 psi

Volume, litres	1.0	2.0	3.0	3.5	4.0	4.25	4.5	4.75	5,0	5.25
Pressure, psi	640	670	690	690	690	690	690	690	690	690
Volume, litres	5.5	5.75	60	6.2	6.25	1	5.8			
Pressure, psi	690	690	700	730	740	/	6			



This page intentionally left blank